Centrale Physique et Chimie PSI 2013

Thème de l'épreuve Quelques aspects de la physique et de la chimie du piano
Principaux outils utilisés propagation des ondes, cristallographie, électrochimie, synthèse organique
Mots clefs onde stationnaire, corde sans raideur, mode propre, fréquence propre, harmonique, inharmonicité, module d'Young, table d'harmonie, chevalet, impédance caractéristique, Fer, ferrite, acier, néoprène, polymérisation, addition sur une liaison double

Corrigé

(c'est payant, sauf le début): - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Extrait gratuit du corrigé

(télécharger le PDF)
           

Énoncé complet

(télécharger le PDF)
                       

Rapport du jury

(télécharger le PDF)
        

Énoncé obtenu par reconnaissance optique des caractères


tOi--\ (, '» Physique--Chimie % « _/ PSI EÜNEÜUHS EENTHHLE°SUPËLEE 4 heures Calculatrices autorisées 2013 Quelques aspects de la physique et de la chimie du piano Le piano est un instrument de musique à cordes frappées inventé par l'italien Bartolomeo Oristofori au milieu du XVIIIèmEUR siècle et perfectionné principalement au XIXème siècle, le piano à queue moderne ayant atteint sa maturité au début du XXème siècle. Ce problème se propose d'aborder différents aspects du fonctionnement et de la conception de l'instrument. Les différentes parties sont largement indépendantes. I Vibrations d'une corde de piano fixée à ses deux extrémités Lorsque l'instrumentiste frappe une touche du clavier, celle--ci actionne un mécanisme, qui actionne a son tour un marteaul, qui vient frapper une corde? Celle--ci entre alors en vibration libre (tant que la touche est enfoncée). On s'intéresse donc dans cette partie aux vibrations libres d'une corde du piano. Sauf avis contraire, on supposera que la corde peut être supposée sans raideur et on négligera toujours les effets de la pesanteur. La corde de masse linéique ,u est tendue avec la tension T 0- Au repos, la corde est rectiligne et parallèle à l'axe horizontal (096). On étudie les mouvements de la corde autour de sa position d'équilibre. On note y(oe,t) le déplacement du point de la corde à l'abscisse 96 a l'instant t. L'axe (Oy) est l'axe vertical ascendant. I.A -- Mise en équation du mouvement transversal d'une corde de piano sans raideur I.A.1) Que signifie l'expression << corde sans raideur >> ? Qu'entend--on par << hypothèse des petits mouve-- ments >> ? I.A.2) Dans le cadre de l'approximation des petits mouvements, établir les deux équations liant les dérivées Ô --î(oe,t) et de la projection sur l'axe (Oy) de la force de tension exercée à l'abscisse 96 par le morceau de corde situé a droite de cette abscisse sur la partie située à gauche T y(oe, t). On fera apparaitre la tension T 0 en le justifiant. partielles par rapport a t et a 96 de la vitesse transversale d'un point de la corde uy(oe,t) : I.A.3) Montrer que la fonction y(oe, t) vérifie l'équation aux dérivées partielles @@ @@ MOÊ : TOË (L1) Identifier la célérité c des ondes transversales sur la corde et en donner l'expression. Comment s'appelle cette équation ? Citer au moins deux autres phénomènes régis par la même équation. I.A.4) On peut lire dans une documentation technique que << une corde de piano est tendue a 85 kg >>. Pouvez--vous en déduire un ordre de grandeur de la tension T 0 d'une corde ? Pour une corde en acier donnant la note << La 4 >>, le diamètre de la corde est de 1,1 mm. La masse volumique de l'acier valant 7,8 >< 103 kg -- m_3, calculer la célérité c des ondes transversales sur la corde. I.B -- Modes propres d'une corde de piano sans raideur, fioee'e auoe deuoe eoetrémités. Position du marteau sur la corde La corde est fixée à ses deux extrémités, 96 = 0 et 96 = L, ce qui impose les conditions aux limites : y(0,t) : y(L, t) = O. I.B.1) Qu'appelle--t--on onde stationnaire ? Montrer que les solutions en ondes stationnaires, physiquement acceptables, de l'équation (1.1) sont de la forme y(oe, t) : yo cos(wt + ga) cos(koe + (b). Quelle est la relation entre w et k ? I.B.2) Qu'appelle--t--on << modes propres >> et << fréquences propres >> de la corde ? Exprimer les fréquences propres fn de la corde en fonction de c et L. Donner l'expression de la solution y,,(oe, t) correspondant au mode propre numéro n. Dessiner l'aspect de la corde à plusieurs instants bien choisis pour n = 1, n = 2 et n = 3. Les marteaux sont réalisés en bois recouvert de feutre. Dans le médium et l'aigu, chaque marteau frappe simultanément deux ou trois cordes identiques pour chaque note. 2013--04--30 22:29:37 Page 1/8 GC) BY-NC-SA OJ I.B.3) La solution générale de l'équation (1.1) correspondant aux conditions aux limites y(0, t) : y(L, t) = 0 est une superposition des modes propres, qui s'écrit y(oe,t) : Î (..., cos 0%") + b,, sin (n"ÎOE)) sin (%) n=1 La corde est frappée a l'instant initial par un marteau de largeur 2a (faible), situé a l'abscisse 5150 (pendant un intervalle de temps supposé infiniment court). Ce marteau communique une vitesse initiale transversale a la corde. On se donne les conditions initiales suivantes (juste après l'attaque de la corde par le marteau) en tout point de la corde : -- la forme initiale de la corde donnée par y(oe, O) = 0 ; -- la vitesse initiale de la corde donnée par Ôy t _ u0 pouroe EUR [fig--d, oe0+a] Ë(oe' ) _ 0 en dehors de cet intervalle a) On donne le résultat du calcul : y(OE,t) : oo . 7TCL _ 7TOEO 4uoaoe0 sm ("Î) sm ("T) _ ( 7TOE) , 7rct C--L nî=:l Tra 7TOEO SlÏl ÏLÎ SlÏl ÏLÎ î "? Quel est l'effet de la largeur & du marteau ? Pour une corde de piano de longueur L = 65 cm (<< Do 4 >>, fréquence fondamentale f1 : 262 Hz), donner l'ordre de grandeur de la fréquence au--delà de laquelle cet effet est sensible. La largeur du marteau vaut 2a : 2 cm. Commentaire ? I)) Comment choisir le point d'attaque si l'on veut supprimer l'harmonique de rang n ? I.C -- Conséquences sur la conception des cordes d'un piano La hauteur du son produit par une corde est fixée par la fréquence f de son mode fondamental n = 1. Les 88 notes d'un piano moderne s'échelonnent du << La 0 >> (fréquence fondamentale f = 28 Hz) au << Do 8 >> (fréquence fondamentale f = 4,2 kHz). I.C.1) Rappeler la relation liant la longueur L d'une corde a la fréquence de son fondamental f . On rappelle que pour la fréquence fondamentale f = 262 Hz, on a une longueur de corde L = 65 cm. Quelles sont les valeurs extrêmes des longueurs de corde prévues dans l'extrême grave et dans l'extrême aigu ? I.C.2) Les longueurs calculées ci--dessus sont excessives dans le grave (problèmes d'encombrement et de fragilisation de la structure a cette échelle) : en pratique, la longueur d'un piano a queue de concert moderne n'excède pas 3 m (la longueur la plus courante étant autour de 2,75 m). La longueur des cordes obéit assez bien a la loi étudiée au I.C.1 pour les notes au--delà du << Do 4 >>. Pour les notes plus graves, on utilise des cordes filées : il s'agit de cordes d'acier, autour desquelles on a enroulé un fil de cuivre. La longueur de corde variant peu dans ce domaine du clavier, expliquer l'intérêt de ce procédé. Pourrait--on envisager de jouer sur la tension T 0 des cordes ? I.C.3) On donne la masse volumique du cuivre: p(Cu) : 9,0 >< 103 kg -- m_3. En assimilant l'enroulement de cuivre a une couche homogène d'épaisseur 1 mm recouvrant le coeur d'acier de diamètre 1,6 mm, et pour la tension T 0 = 850 N, calculer la longueur de la corde du << La 0 >> (note la plus grave du piano, de fréquence fondamentale f = 28 Hz). I.D -- Prise en compte de la raideur : dispersion et inharmonicitê En réalité, a cause de l'élasticité du matériau constituant une corde, il faut prendre en compte sa raideur. Cela est particulièrement vrai pour les cordes de grand diamètre3. Il nous faut donc raffiner le modèle adopté jusqu'à présent. On considère toujours que les mouvements de la corde sont transversaux, et contenus dans le plan vertical 3503). La théorie de l'élasticité montre que la tension Î(oe, 75) n'est plus tangente a la corde et que pour permettre la courbure de la corde, il faut prendre en compte un couple de moment f : iF(oe, t)ûz dont l'expression est donnée par 4 2 7rr Ô F(oe, t) = -- --y 4 Ô£L'2 où r désigne le rayon de la corde. E, appelé << module d'Young >>, traduit les propriétés d'élasticité du matériau constituant la corde et s'exprime en Pascal. On considère ici une corde en acier de masse volumique p(acier) : 7,8 >< 103 kg -- m_3 et de module d'Young E = 190 CPa. C'est d'ailleurs la raison pour laquelle on enrobes les cordes de grave avec du cuivre enroulé, plutôt que d'augmenter encore le diamètre du coeur d'acier. 2013--04--30 22:29:37 Page 2/8 GC) BY-NC-SA La portion de corde comprise entre les abscisses :E et :E + dac est donc soumise aux forces de tension et aux couples --» Tg(oe,t) : -- (T,,(oe, t)ûoe + Ty(oe,t)ûy) --F(oe, t)ûz en :E Îd(oe+doe,t) : Toe(oe+doe,t)ûoe +Ty(oe+doe,t)ûy F(oe+doe,t)ûz en oe+doe I.D.1) a ) Vérifier l'homogénéité de la relation donnant F(oe, 75). b) En appliquant le théorème de la résultante cinétique a la portion {35,35 + dac}, montrer que T a, ne dépend que du temps. On supposera que T a, est en réalité une constante notée T 0- Établir également une équation aux dérivées partielles liant y(oe, t) et T y(oe, t). c) En appliquant le théorème du moment cinétique barycentrique a la portion {:B, :E + dac}, établir une nouvelle équation aux dérivées partielles liant y(oe,t), Ty(oe,t) et F(oe,t). À cette fin, on négligera en justifiant cette approximation le moment d'inertie de la portion {:B, :E + dac} par rapport a l'axe GZ. d) En déduire l'équation aux dérivées partielles régissant les mouvements de la corde @@ T Ô2y 7T7°4 Ô4y _ ,a 8752 0 Ôoe2 4 Ôoe4 _ où ,a désigne toujours la masse linéique de la corde. 0 I.D.2) On s'intéresse a l'influence de la raideur sur les fréquences propres de la corde. On se place donc dans un mode propre de vibration et on suppose y(oe, t) : yo cos(koe + @) cos(wt). a ) Établir la relation de dispersion w(k) d'un tel mode. b) Montrer que les fréquences propres de la corde tendue entre ses extrémités fixées en :E = 0 et :E = L s'écrivent fn : ni\/1 +Bn2 2L où n est un entier naturel non nul, 0 la célérité des ondes sur la corde sans raideur et B une constante qu'on exprimera en fonction de E, T 0, 7° et L. Pouvez--vous en déduire un des avantages présentés par un piano a queue par rapport a un piano droit ? c) Tracer sur un même graphique les courbes représentatives de fn en fonction de n pour une corde sans raideur et pour la même corde avec raideur. Commenter. d) Calculer numériquement B (on prendra L = 0,65 m, 7° : 0,55 mm, TO : 850N et E = 190 CPa). En déduire l'expression approchée de l'inharmonicité de raideur i... définie par le rapport i,, = ( fn -- f£)/f£ où f,? désigne la fréquence propre du mode n pour une corde sans raideur. e ) À partir de quel rang n la fréquence propre fn de la corde avec raideur est--elle plus élevée d'un demi-ton que celle de la corde idéale, f,? ? Donnée : deux notes séparées d'un demi-ton ont des fréquences fondamentales qui sont dans un rapport 21/12. Il Couplage entre une corde de piano et la table d'harmonie: le rôle du chevalet On revient ici a une corde sans raideur. Une corde vibrante est un << radiateur >> acoustique très peu efficace. Si l'on veut produire du son efficacement, il faut utiliser une structure de bien plus grande taille : il s'agit de la table d'harmonie, mince planche d'épicéa, qui par ses vibrations, rayonne du son dans l'espace environnant. On s'intéresse a la manière dont la corde vibrante peut transférer une partie de son énergie a la table d'harmonie par l'intermédiaire d'une pièce de bois collée sur la table : le chevalet. II.A -- Impédance caractéristique d'une corde vibrante II.A.1) On considère une onde progressive sinusoïdale se propageant vers les :E croissants le long de la corde sans raideur étudiée dans la partie I.A. On conserve les notations de la partie 1. Montrer que pour cette onde progressive, le rapport T y(oe,t) /vy(oe,t) est constant et prend la valeur --,ac. On appelle << impédance caractéristique >> de la corde la grandeur ZC : ,ac. Quelle est la dimension de Zg ? II.A.2) Que devient ce rapport si l'onde progressive sinusoïdale se propage vers les :E décroissants ? II.B -- Couplage corde-chevalet La << partie utile >> (ou longueur vibrante) de la corde est tendue entre l'extrémité gauche (en :E = 0) où l'agrafe la maintient immobile : y(0, t) = O, et l'extrémité droite (en :E = L) où elle repose sur le chevalet. 2013--04--30 22:29:37 Page 3/8 GC) BY-NC-SA agrafe (:D = 0) corde & | ' | marteau table d'harmonie chevalet (:D = L) Figure 1 II.B.1) On propose de modéliser l'extrémité droite de la corde (située en :E = L) par la condition aux limites T y(L, t) / uy(L, t) = --R, où R est une constante positive caractérisant le couplage corde--chevalet. Cette constante R se nomme l'impédance mécanique de l'ensemble chevalet--table d'harmonie. Pourquoi ce modèle est--il pertinent selon vous ? De quel phénomène rend--il compte ? On se contentera d'une réponse qualitative. II.B.2) On cherche des solutions en ondes stationnaires de la forme y(oe, t) = f (ac) exp(st) où 3 est un nombre complexe. Montrer que f(oe) : Asinh(soe/c) et que tanh(sL/c) : --1/r où l'on a posé r : R/Zg. Ce dernier résultat peut se récrire 2Ls r -- 1 ex -- = p c r + 1 II.B.3) 3 étant complexe, on pose 3 : oz +jw, où oz et ce sont des réels et j2 = --1. Dans le cas où 7° > 1, qui correspond au cas du piano, calculer les valeurs possibles de w ; commenter. Calculer également oz en fonction de c, L et 7° ; commenter. forme que l'on adopte dorénavant. II.B.4) Montrer que la solution précédente tenant compte du couplage avec le chevalet est de la forme y(oe, t) : exp(at) (exp(aoe / c)F (t+oe / c) --exp(--aoe / c)F (t--oe / c)) Qu'en dites--vous ? Est--ce toujours une onde stationnaire ? II.B.5) L'expérience quotidienne du pianiste montre qu'une note peut persister plusieurs secondes dans l'ex-- trême grave, tandis que dans l'extrême aigu, le son ne persiste qu'une fraction de seconde. Les calculs menés ci--dessus sont-ils en accord avec l'expérience ? Quel(s) raffinement(s) pourrait--on apporter au modèle ? III Corrosion des cordes de piano Les cordes de piano sont en acier extrêmement solide et sont de diamètre variable, d'environ 0,8 mm pour les notes les plus aiguës jusqu'à 1,5 mm pour les notes les plus graves. Les cordes de grave sont dites filées dans la mesure où elles sont gainées d'un fil de cuivre destiné a les alourdir pour permettre une tension moindre et une plus grande flexibilité. Chacune des trois sous-parties est indépendante et peut être traitée séparément des autres. III.A -- L'acier: constituant essentiel des cordes de piano L'acier est constitué d'au moins deux éléments, majoritairement le fer puis le carbone dans des proportions comprises entre 0,02 % et 2 % en masse. C'est essentiellement la teneur en carbone qui confère a l'alliage les propriétés du métal qu'on appelle << acier >>. La structure du fer + carbone évolue d'une façon complexe en fonction de la température et de la teneur en carbone. III.A.1) Le fer oz Le fer peut cristalliser sous deux formes selon la température. A basse température, le fer oz cristallise dans une structure cubique centrée cc. a ) Donner la définition d'une maille élémentaire. b) Combien la maille conventionnelle du fer oz contient--elle d'atomes de fer ? c ) On donne le paramètre de la maille cubique aa : 287 pm. Calculer alors le rayon atomique du fer RFe ainsi que la masse volumique du fer oz, pFEURa' d ) Dans la représentation de la maille de fer oz donnée figure 2, a quel type de site intersticiel correspond O' ? Est--il régulier ? Justifier votre réponse. e ) Répondre aux mêmes questions pour le site intersticiel T ' , situé a la distance a / 4 de O' . f) Localiser et dénombrer les deux types de sites dans la maille conventionnelle du fer oz. g) Établir en fonction de RFe l'expression de R0, rayon maximal d'un atome qui s'insèrerait dans un site O' sans déformation de la structure cristalline de base. Calculer RO/. h) Répondre a la même question pour le site T ' . 2013--04--30 22:29:37 Page 4/8 GC) BY-NC-SA ,la.» Figure 2 Sites intersticiels O' et T ' dans la maille de fer oz III.A.2) Du fer oz à la ferrite La ferrite est une solution solide de carbone dans le fer oz. Le terme ferrite désigne en effet l'acier a très faible teneur en carbone. a) Indiquer dans quel type de site interstitiel les atomes de carbone se placeront afin d'engendrer le minimum de déformation du réseau hôte. Est--il possible que cela se fasse sans aucune déformation ? b) Le maximum de << solubilité >> du carbone est de 0,035 % en masse. Établir la formule de la ferrite FeCX. c) Déterminer le pourcentage d'occupation des sites T ' par les atomes de carbone. d) Calculer la masse volumique de la ferrite en supposant que le réseau hôte n'est pas déformé. III.B -- Cordes de grave Intéressons--nous maintenant au cuivre : l'élément ainsi que sa préparation industrielle pour les cordes de piano. III.B.1) Le cuivre : configuration électronique, isotopes stables a) Donner la configuration électronique attendue du cuivre dans son état fondamental en énonçant les règles utilisées. Préciser quels sont les électrons de coeur et ceux de valence. En réalité, cet élément constitue une exception a la règle de Klechkowski, sa configuration ne laisse apparaitre qu'un seul électron de valence. Donner cette configuration et proposer une explication. b) Donner la définition d'un élément de transition et situer avec précision ces éléments dans la classification périodique. Déduire de la configuration électronique attendue déterminée a la question III.B.1a, la place de l'élément cuivre dans la classification périodique. III.B.2) Préparation industrielle du cuivre Le cuivre est un des rares métaux qui existent a l'état natif. Ce fait d'ailleurs explique probablement qu'il fut le premier métal utilisé par les hommes. Les minerais de cuivre sont essentiellement constitués de sulfures avec de nombreuses impuretés métalliques. La métallurgie du cuivre est réalisée selon deux procédés différents : -- le procédé par voie sèche, -- le procédé par voie humide. a) Comment nomme--t--on ces deux types de métallurgie ? La voie humide pour l'extraction du cuivre est de plus en plus privilégiée. Celle--ci comporte schématiquement trois étapes : -- la lixiviation, -- la cémentation, -- l'électr0lyse. b) Expliciter les termes de lixiviation et de cémentation. La solution de sulfate de cuivre (Cu2+ + 80%) et d'acide sulfurique obtenue après les deux premières opérations subit une électrolyse. La figure A du document réponse fournit la courbe intensité--potentiel pour une électrode de cuivre au contact d'une solution molaire d'acide sulfurique (courbe &) et celle obtenue avec la même électrode au contact d'une solution molaire de sulfate de cuivre (courbe b). c) Décrire le montage expérimental a effectuer pour tracer une courbe intensité--potentiel. d) Préciser les réactions électrochimiques mises en jeu dans les deux parties des deux courbes (écrire directement sur le document réponse qui sera a rendre avec la copie). Rappel: en solution, les ions hydr0génosulfate HSOÂ et sulfate 80% ne sont pas électroactifs pour la réduction. @) Comment peut--on qualifier le couple Cu2+ / Cu a la réduction ? À l'oxydation ? 2013--04--30 22:29:37 Page 5/8 EC) BY--NC-SA f) Si l'on augmente la tension, on voit apparaître un palier sur l'une des branches de la courbe (9. Compléter qualitativement le diagramme et expliquer l'origine de ce palier. De quoi dépend son ordonnée ? Pour quel type de réactions électrochimiques ce palier n'est--il pas observé ? La solution molaire de sulfate de cuivre et d'acide sulfurique (pH : O) est électrolysée dans une cuve, avec une anode en plomb passivé, sur laquelle il y a dégagement de dioxygène et une cathode en cuivre très pur sur laquelle le cuivre se dépose. La figure 3 présente la courbe intensité--potentiel enregistrée. @ (A - dm--2> ! l l l l l l l l ' l l l l l l l l l l | | l > VESH (V) Figure 3 g) Quelles sont les réactions qui ont lieu aux électrodes ? (les propriétés redox du plomb n'interviennent pas). Pour qu'il y ait réaction a l'électrode, il est nécessaire que les espèces électroactives s'approchent de cette électrode. Quels sont les trois phénomènes qui assurent le transport de matière ? h) Déterminer la tension théorique de fonctionnement (Va -- Vc)i=0 (on admettra que les gaz se dégagent sous la pression atmosphérique). En réalité, pour une densité de courant de 130 A - m_2, compte tenu des phénomènes de surtension et de chute ohmique dans l'électrolyseur, la tension a appliquer est de 2,44 V. Sachant que le rendement faradique est de 85%, déterminer l'énergie nécessaire pour déposer 1 kg de cuivre pur. III.C -- Corrosion de l'acier & l'air humide Dans l'acier ordinaire, la présence de carbone améliore beaucoup les propriétés mécaniques du fer sans pour autant réduire sa vulnérabilité a la corrosion. La corrosion des cordes de piano est donc un réel problème auquel il faut remédier. Dans cette partie, on assimilera l'acier au fer. L'allure du diagramme E--pH du fer a 25°C est donnée en figure B du document réponse. Ce document sera complété et rendu avec la copie. Ce diagramme est établi pour une concentration de tracé totale en espèces dissoutes de Ctra mol -- L_1. La convention de frontière entre deux domaines de prédominance d'espèces dissoutes est l'égalité des concentrations molaires. Les espèces prises en compte pour ce diagramme sont : -- espèces solides : Fe, Fe203 ; -- espèces dissoutes : Fe2+, Fe3+. III.C.1) Déterminer le degré d'oxydation de l'élément fer dans chaque espèce considérée. Compléter le diagramme du document réponse en attribuant a chacune des zones l'espèce chimique correspon-- dante. Justifier avec soin votre réponse, en particulier pour le domaine D. Remarque : la frontière entre les domaines C et D n'est pas tracée. III.C.2) Déduire du diagramme : -- la concentration de tracé Ctra, -- le produit de solubilité de Fe203(s), -- la pente de la frontière entre les domaines B et D. III.C.3) Tracer sur le diagramme la frontière délimitant les domaines C et D. On justifiera avec soin le calcul de sa pente. III.C.4) Tracer sur ce même diagramme le diagramme potentiel--pH de l'eau pour des pressions gazeuses égales a 1 bar. Les cordes en acier sont--elles attaquées par une eau aérée ? désaérée ? Cela dépend--il du pH ? III.C.5) Déterminer pour chaque domaine du diagramme s'il s'agit d'un domaine d'immunité, de corrosion ou de passivité. Définir ces trois termes. 2013--04--30 22:29:37 Page 6/8 GC) BY-NC-SA III.C.6) Expliquer pourquoi on ne pourrait pas utiliser des cordes en acier avec des raccords de cuivre ? Que se passe--t--il alors ? IV Polymères synthétiques dans le piano Si autrefois les touches blanches des pianos étaient recouvertes d'ivoire et les noires d'ébène, aujourd'hui les matériaux de remplacement sont le plastique ou le polymère (ivoire synthétique ou << ivoirine >>). De plus, des colles en polymère sont utilisées pour réparer les pianos et coller le bois, comme le polychloroprène (encore appelé Néoprène). Intéressons--nous de plus prêt a cette colle polymère. I V.A -- Étude du monomère : le chloroprène IV.A.1) Le néoprène est formé a partir de chloroprène, représenté figure 4. Donner son nom dans la nomencla-- ture officielle. Cl Figure 4 Chloroprène IV.A.2) La première étape de synthèse du chloroprène consiste en une chloration du buta--1,3--diène avec du dichlore. Les réactifs réagissent mole a mole. a) Écrire l'équation bilan de la réaction en précisant la formule topologique du produit majoritaire obtenu (on ne tient pas compte de la stéréochimie). b) Indiquer le mécanisme réactionnel en milieu ionique. c) Le mélange obtenu est--il optiquement actif ? Justifier votre réponse en précisant le (ou les) stéréoisomère(s) obtenu(s) ainsi que leurs proportions relatives. Quelle relation d'isomérie existe--t--il entre eux ? d) Indiquer pour chaque stéréoisomère la configuration absolue du (ou des) carbone(s) asymétrique(s) en la justifiant. IV.A.3) Si cette chloration était réalisée sur le (Z)--but--2--ène, combien de stéréoisomères seraient obtenus ? Écrire leur formule topologique et indiquer les relations de stéréoisomérie qui les lient. En réalité, cette première étape de synthèse du chloroprène est une chloration radicalaire, réalisée a 250°C et sous 1 a 7 bar de dichlore gazeux. Le produit majoritaire est le 1,2--dichlorobut--3--ène qui subit ensuite une déshydrochloration en solution alcaline diluée pour conduire au chloroprène. IV.A.4) Écrire l'équation bilan de la réaction de déshydrochloration en solution alcaline. I V.B -- Polymérisation du néoprène En principe il est possible de polymériser le chloroprène par des techniques de catalyse anionique, cationique et de Ziegler--Natta. En raison des propriétés du produit et de considérations économiques, seule la polymérisation radicalaire est employée aujourd'hui. Cl \ _ -- --n Figure 5 Polychloroprène ou néoprène IV.B.1) Indiquer la stéréochimie de la double liaison en la justifiant. IV.B.2) Un échantillon de néoprène a une masse molaire moyenne de 12 500 g - mol--1. Quel est son indice de polymérisation moyen ? 2013--04--30 22:29:37 Page 7/8 GC) BY-NC-SA Pour l'accélération de la pesanteur, on prendra g : 10m -- s_ . Constantes fondamentales Constante des gaz parfaits : R : 8,314J -- K_1 - mol--1 Constante de Faraday : F = 96500 C - mol--1 Constante d'Avogadro : NA : 6,023 >< 1023 mo]--1 T On prendra: RÎ ln 10 : 0,06V a 25°C T(K) : T(°C) + 273,15 Grandeurs de référence Pression standard : P0 = 1 bar : 1,0 >< 105 Pa Concentration standard : C0 = 1,0 mol -- L--1 Données 2 Élément H C 01 Fe Cu Numéro atomique 1 6 17 26 29 Masse molaire atomique (g -- mol--1) 1,01 12,0 35,5 55,8 63,5 Rayon atomique (pm) 25 70 100 140 135 Grandeurs thermodynamiques à 900K Cu CuO Cu20 CuSO4 CuS Cu28 02 802 Température de fusion (K) 1356 1599 1508 383 1373 52 198 A,cG° (kj --rnol_1) 0 --75 --103 --438 --47 --101 --296 AfHO (kj -mol_1) 0 --151 --168 --820 --113 --130 --362 Potentiels standard à 298K par rapport à l'ESH Cu2+/Cu(s) H20/H2(g) 02(g)/H20 Fe3+/Fe2+ Fe2+/Fe(s) Zn2+/Zn(s) Ni2+/Ni(s) SgOâ/SO! \E° (V) 0,34 0,00 1,23 0,77 --0,44 --0,76 --0,25 2,00 . o . FIN . o . 2013-04--30 22:29:37 Page 8/8 (":_

Extrait du corrigé obtenu par reconnaissance optique des caractères


 Centrale Physique et Chimie PSI 2013 -- Corrigé Ce corrigé est proposé par Tom Morel (Professeur agrégé) et Fabrice Maquère (Professeur agrégé) ; il a été relu par Jimmy Roussel (Professeur en CPGE), Stéphane Ravier (Professeur en CPGE), Anna Venancio-Marques (ENS Lyon) et Laure-Lise Chapellet (ENS Lyon). Ce sujet, composé de quatre parties indépendantes, traite de la physique puis de la chimie du piano. · La partie I est consacrée à l'étude des vibrations d'une corde de piano fixée à ses deux extrémités. On détermine l'équation de propagation de l'onde, puis on étudie les modes propres d'une corde sans raideur. On envisage ensuite brièvement les conséquences sur la fabrication d'un piano. Finalement, la prise en compte de la raideur permet d'arriver à la dispersion et à l'inharmonicité d'une onde. · L'étude du couplage du piano avec la table d'harmonie est réalisée dans la partie II. En partant de l'impédance caractéristique d'une corde vibrante, on détermine la forme de l'onde en prenant en compte le couplage. Là aussi, le cours sur les ondes suffit à traiter cette partie. La partie chimie s'intéresse aux matériaux utilisés pour fabriquer les cordes et les touches d'un piano. · La partie III porte sur les cordes. Elle commence par l'étude cristallographique de l'acier qui les constitue avec une étude complète des sites intersticiels. Le sujet se focalise ensuite sur le cuivre utilisé pour les cordes de grave et plus particulièrement sur l'obtention électrochimique de ce métal. Enfin, la corrosion des cordes en acier en présence d'air humide est abordée. · La partie IV s'intéresse à l'obtention des polymères synthétiques utilisés pour la fabrication des touches : l'élaboration du monomère utilise une réaction d'addition sur une liaison double C=C, qui est étudiée d'un point de vue mécanistique, tandis que la polymérisation permet de calculer un indice de polymérisation. Ce sujet demandait avant tout une connaissance précise du cours et une familiarité avec les applications classiques. Il vous permettra de vérifier que vous avez assimilé les chapitres associés. Indications Partie I I.A.2 L'approximation des petits angles permet d'écrire tan (x, t) (x, t) Puis écrire le principe fondamental de la dynamique pour l'élément de masse dm µ dx. I.B.1 Remplacer l'expression d'une onde stationnaire dans l'équation de propagation et étudier les différents cas en fonction de la valeur de la constante. I.B.3.a Le timbre est modifié par la présence du sinus cardinal. Cet effet est d'autant plus marqué que le sinus cardinal de variable n a/L est proche de zéro. I.B.3.b Là où le marteau frappe, il ne peut y avoir de noeud de vibration. - - ) en fonction de dx I.D.1.c Exprimer les vecteurs GA et GB dans la base (- ux , - u y et dy. I.D.2.d Faire un développement limité à l'ordre 1 en B n2 . Partie II II.B.2 Utiliser la relation de la question I.A.2 : Ty (x, t) = T0 y x puis faire apparaître vy (x, t) et calculer cette relation en x = L. II.B.3 est lié à la proportion de l'onde transmise au chevalet. II.B.5 Faire apparaître la fréquence f dans l'expression de . Partie III III.A.1.b La figure 2 représente 2 mailles conventionnelles juxtaposées. III.A.1.f En plus du site identifié par l'énoncé, il existe des sites octaédriques au centre des arêtes, ainsi que plusieurs sites tétraédriques sur les faces. III.A.2.a Raisonner uniquement sur les rayons RO et RT établis à la question III.A.1.g et à la question III.A.1.h. III.A.2.b Raisonner sur une maille conventionnelle. III.B.1.a Comme pour les configurations électroniques des ions des éléments de transition, il y a une inversion de deux niveaux d'énergie par rapport à la règle de Klechkowski. III.B.1.b Tous les éléments du bloc d de la classification périodique ne sont pas des éléments de transition : il y a des exceptions. III.B.2.c Il faut utiliser un montage à 3 électrodes. III.B.2.d Faire un bilan des espèces présentes et électroactives. III.B.2.e L'oxydation est rapide ou lente ? La réduction ? III.B.2.f Identifier le phénomène limitant. III.B.2.h Calculer la différence des potentiels d'oxydoréduction des couples mis en jeu. Pour le calcul de l'énergie, exprimer au préalable, la charge échangée au cours de l'électrolyse en fonction de la masse de cuivre déposé. III.C.2 Ctra peut être déterminée à partir de la frontière entre les domaines B et C, Ks à partir de la frontière entre A et D, et la pente de la frontière B/D graphiquement. III.C.3 Seule la pente a besoin d'être calculée, la droite peut être placée sur le diagramme par continuité. III.C.4 Une solution aérée contient du dioxygène dissous. III.C.6 Le contact fer-cuivre forme une micropile. Partie IV IV.A.2.c Le chlore ne peut pas former d'ion ponté dans le mécanisme d'addition du dichlore sur une liaison double. IV.A.3 Attention à la formation d'un composé méso, achiral. I. Vibrations d'une corde de piano fixée à ses deux extrémités I.A Mise en équation du mouvement transversal d'une corde de piano sans raideur I.A.1 Une corde sans raideur signifie qu'elle n'offre aucune résistance à la courbure, la tension de la corde est donc toujours tangente à la corde. Dans ce cadre, on étudie le mouvement dans le cas de petits mouvements, c'est-à-dire que l'angle que fait la corde avec l'axe horizontal est très petit devant l'unité. I.A.2 On s'intéresse à une perturbation y(x, t) qui se propage. Ainsi, par définition de cette dernière, y/x 1. La longueur ds de l'élément de corde compris entre les abscisses x et x + dx vaut donc s 2 p y 2 2 ds = dx + dy = dx 1 + x Comme y/x 1, en se limitant à l'ordre 1 en y/x, on obtient ds dx. En notant µ la masse linéique de la corde, la masse dm de la portion de câble de longueur ds s'écrit dm = µ ds µ dx Le poids étant négligé, l'élément de corde, de longueur ds dx, de masse dm µ dx, est soumis à : - · la tension de la portion de fil située à droite du point B, soit T (x + dx, t) ; - · la tension de la portion de fil située à gauche du point A, soit - T (x, t). La portion de câble est schématisée comme suit : B dy (x + dx, t) - T (x + dx, t) y(x + dx, t) A - - T (x, t) (x, t) y(x, t) x x + dx Le mouvement de la corde ayant lieu selon Oy, le principe fondamental de la dynamique appliqué à cet élément de corde s'écrit - - 2y - ey = T (x + dx, t) - T (x, t) t2 Projetons cette équation sur les axes (Ox) et (Oy) : 0 = Tx (x + dx, t) - Tx (x, t) 2 dm y = Ty (x + dx, t) - Ty (x, t) t2 dm