Centrale Chimie PC 2017

Thème de l'épreuve Autour du méthacrylate de méthyle
Principaux outils utilisés polymères, thermodynamique, mélanges binaires, chimie organique, chimie de coordination
Mots clefs méthacrylate de méthyle, polyméthacrylate de méthyle, Elf-Atochem, production en continu, polymère, catalytique, Hyalophora cecropia, réarrangement de Claisen, brucine, séparation d'énantiomères

Corrigé

(c'est payant, sauf le début): - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Extrait gratuit du corrigé

(télécharger le PDF)
           

Énoncé complet

(télécharger le PDF)
                                               

Rapport du jury

(télécharger le PDF)
           

Énoncé obtenu par reconnaissance optique des caractères


Ü» Chimie [\ %, 1--l __/ PCC cnncuuns EENTHHLE-SUPËLEE 4 heures Calculatrices autorisées N Autour du méthacrylate de méthyle Le marché mondial de méthacrylate de méthyle (noté MMA par la suite) est estimé à plus de 3 millions de tonnes pour l'année 2017. L'industrie automobile et le domaine de la construction et de la rénovation immobilières sont les principaux utilisateurs de MMA (plus de 80%), mais la demande croit très fortement dans le secteur de l'électronique en particulier pour le développement des écrans plats. En France, le principal producteur de MMA est Arkema. La plateforme de Carling/Saint--Avold, située dans l'est de la France, regroupe le centre de recherche et procédés acryliques et les unités de production d'acide acrylique et de monomères acryliques. Ce problème comporte quatre parties indépendantes : -- la partie I étudie quelques aspects d'un procédé de production en continu du méthacrylate de méthyle exploitant le procédé « Elf--Atoehem » ; -- la partie Il s'intéresse à une seconde voie de synthèse du méthacrylate de méthyle mettant en jeu un catalyseur organométallique ; -- la partie III examine quelques caractéristiques du polymétha0rylate de méthyle (PMMA), principale utilisa-- tion du MMA ; -- enfin, la partie IV traite de la synthèse d'une hormone juvénile dont une des voies de synthèse utilise un dérivé du MMA. Ce texte est accompagné d'un document réponse à rendre avec la copie. Les données sont regroupées en fin d'énoncé. I Procédé de production en continu de méthacrylate de méthyle Le schéma de l'unité de production en continu du méthacrylate de méthyle est reproduit figure C du docu-- ment réponse ; y figurent l'implantation des différents appareils et quelques informations sur les débits entrants et sortants, les compositions des différentes phases (notées w, au représentant les fractions massiques) et les températures. Trois unités seront étudiées successivement : -- l'unité de synthèse du méthacrylate de méthyle où les trois étapes de la synthèse s'effectuent dans trois réacteurs successifs R1, R2 et R3 ; -- l'unité de purification du méthacrylate de méthyle où une extraction liquide--liquide a lieu dans une colonne C1 et deux distillations fractionnées dans deux colonnes de rectification D1 et D2 ; -- l'unité de traitement des acides résiduaires qui comporte un réacteur R4, une colonne d'extraction Cg, un évaporateur E et un dispositif de cristallisation--filtration F. I.A * Unité de synthèse du méthacrylate de méthyle Le schéma de synthèse du procédé est représenté figure 1. OH OH o CH3 ' Réacteur R1 ! // Réacteur R2 / HgC C C:N > H3CÉC_C H2C:C NH ' H2SO4 ' \ H2804 \ / 2 C CH3 CH3 NH2 ... 2--hydroxy--2--méthylpropanenitrfle 2--hydroxy--2--méthylpropanamide méthacrylamide O CH3 Réacteur R3 H C 2 = C CH3OH \ / OCH3 H2804 C O méthacrylate de méthyle Figure 1 Schéma de synthèse du méthacrylate de méthyle (MMA) 2017-05--08 11:10:07 Page 1/12 l@c_ BY--NC-SA L'obtention d'une tonne de MMA requiert, environ, 970 kg de 2--hydroxy--2--méthylpropanenitrile, 380 kg de méthanol et 1700 kg d'acide sulfurique concentré. On obtient comme sous--produits environ 2700 kg d'acides résiduaires composés essentiellement d'hydrogénosulfate d'ammonium NH4(HSO4) et d'acide sulfurique. I.A.1) Évaluer le rendement de la synthèse. Deux réacteurs en série R1 et R2 permettent l'obtention du méthacrylamide. I.A.2) Écrire les équations des réactions modélisant les transformations chimiques intervenant dans chacun des deux réacteurs R1 et R2. I.A.3) Le contenu du réacteur R1 doit--il être chauffé ou refroidi afin de maintenir sa température constante, voisine de 90 °C '? I.A.4) Pourquoi utiliser deux réacteurs successifs R1 et R2 dans cette unité de synthèse '? I.A.5) Justifier la nature des espèces chimiques sortant du réacteur R3. I.A.6) Déterminer la valeur du débit massique du méthanol entrant dans le réacteur R3. I.B * Unité de purification du méthacrylate de méthyle Dans l'unité de purification, on cherche a obtenir du MMA pur à partir du mélange eau--MMA--méthanol sortant du réacteur R3. Ce mélange entre dans une colonne d'extraction liquide--liquide C1 afin d'extraire l'eau et une grande partie du méthanol du MMA. Le rafiinat sortant en tête de colonne C1 comportant le MMA et quelques traces de méthanol est envoyé dans une colonne à distiller D1 afin d'obtenir du MMA pur en pied de colonne. I.B.l) Extraction de l'eau et du méthanol dans la colonne C1 La colonne C1 fonctionne à 27 °C sous 1 bar. De l'eau est injectée en haut de la colonne. L'extrait sortant contient uniquement de l'eau et du méthanol ; le rafiinat sortant contient le MMA et quelques traces de méthanol. a ) Décrire le principe d'une extraction liquide--liquide. b) Sur un exemple de votre choix, proposer un protocole pour réaliser une extraction liquide--liquide en salle de travaux pratiques. @) Dans les conditions de fonctionnement de la colonne C 1» quelles hypothèses peut--on émettre sur les miscibi-- lités respectives du méthanol avec l'eau d'une part et du MMA avec l'eau d'autre part '? Justifier a partir des relations structure--propriété des entités chimiques mises en jeu. d ) Le diagramme isobare liquide--vapeur du mélange binaire eau--MMA est représenté figure 2. Indiquer la nature des phases présentes dans les domaines 1 a 6. 380 370 360 5 350 6 g, 8 5 340 CG 55 CL É 330 320 1 310 300 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Fraction massique en MMA wMMA Figure 2 Diagramme isobare (1 bar) d'équilibre liquide--vapeur du système eau--MMA @) Compte tenu des conditions de fonctionnement de la colonne C1, on considère un mélange eau--MMA de fraction massique w M M A : 0,20. A--t--on plus de 1% de la masse initiale de MMA dans la phase aqueuse '? f ) Une distillation du mélange eau--MMA aurait--elle permis l'obtention de MMA avec une pureté satisfaisante ? Justifier le choix industriel du procédé. 9) Compte tenu des données indiquées sur le schéma du procédé, comment régler le débit de rafiinat D R afin d'avoir une fraction massique en méthanol inférieure à 3% dans ce dernier ? 2017-05--08 11:10:07 Page 2/12 GC) BY--NC-SA I.B.2) Purification du MMA par distillation fractionnée dans la colonne D1 a ) Compte tenu des informations indiquées sur le schéma du procédé et des données fournies, tracer, le plus pré-- cisément possible, l'allure du diagramme binaire isobare d'équilibre liquide--vapeur du système MMA--méthanol. b) Rendre compte, a l'aide du diagramme, de l'obtention du résidu et du distillat avec les compositions données. I.C * Unité de traitement des acides résiduaires Les acides résiduaires (solution sulfurique d'hydrogénosulfate d'ammonium) sont envoyés dans un réacteur R4 afin d'être neutralisés à l'aide d'ammoniac gazeux en excès. La solution neutralisée subit ensuite une évaporation (évaporateur E) puis une cristallisation et une filtration (dispositif F). On récupère ainsi des cristaux de sulfate d'ammonium. Par ailleurs, l'ammoniac en excès est extrait de l'air par de l'eau dans la colonne C2. I.C.l) Neutralisation de la solution sulfurique d'hydrogénosulfate d'ammonium a) Écrire la (ou les) équation(s) de réaction modélisant la (ou les) transformation(s) chimique(s) se déroulant dans le réacteur R4 qui fonctionne à température ambiante. b) La (ou les) transformation(s) intervenant dans le réacteur R4 est (ou sont)--elle(s) quantitative(s) '? Justifier. I.C.2) Évaporation de l'eau et cristallisation du sulfate d'ammonium La solution de sulfate d'ammonium, de fraction massique w2, issue du réacteur R4 est mélangée avec le filtrat obtenu lors des opérations de cristallisation--filtration a la sortie du dispositif F. L'ensemble est concentré par évaporation de l'eau dans l'évaporateur E pour obtenir une solution de fraction massique w3 en sulfate d'ammonium. Cette solution est refroidie à 10 °C dans le dispositif F afin d'obtenir des cristaux de sulfate d'ammonium. Lors de la filtration, le filtrat est recyclé en continu et des cristaux de sulfate d'ammonium sont collectés. a ) Évaporer à 104 °C puis abaisser la température de 104 °C à 10 °C a un coût. Justifier la nécessité de ces deux opérations dans le procédé industriel. Les cristaux de sulfate d'ammonium obtenus sont humides. Ils sont envoyés au laboratoire d'analyse afin de , . . . , , . masse d'eau determiner leur taux d'humidité 7' défini par T : __. masse de produit sec Le technicien prélève 90,2 mg de cristaux humides qu'il dissout dans un grand volume d'eau. Il titre la solution ainsi obtenue par une solution de chlorure de baryum de concentration molaire égale à 5,00 >< 10"2 molL"'. Le suivi de ce titrage dont la réaction support est une réaction de précipitation conduit a un volume a l'équivalence de 12,7 mL. b) Indiquer une méthode de suivi de ce titrage et de repérage de l'équivalence. 6) Déterminer la valeur du taux d'humidité des cristaux de sulfate d'ammonium obtenus dans ce procédé. d ) Proposer une autre méthode pour déterminer le taux d'humidité de ces cristaux au laboratoire. e ) On considère qu'en régime permanent la totalité du sulfate d'ammonium présent dans la solution issue de R4 se retrouve dans les cristaux. Donner l'expression littérale reliant D6 à D2, w2 et T. La valeur du débit D6 indiquée sur le schéma du procédé est--elle en accord avec le taux d'humidité déterminé par le laboratoire d'analyse '? f ) Estimer la valeur de la puissance thermique totale nécessaire à l'ensemble du procédé de traitement depuis la sortie du réacteur R4 jusqu'à l'obtention des cristaux de sulfate d'ammonium. La résolution de cette question nécessite des prises d'initiative de la part des candidats. Toute démarche engagée, même si elle n'est pas aboutie, sera valorisée. II Voie de synthèse du méthacrylate de méthyle par catalyse ho- mogène La deuxième voie de synthèse du méthacrylate de méthyle propose le passage par un produit intermédiaire, le propanoate de méthyle. Ce dernier est obtenu par méthoxycarbonylation de l'éthène avec un bon rendement (> 90%) et une excellente sélectivité grâce a un catalyseur organométallique. Le schéma de cette voie de synthèse du MMA est représenté figure 3. CH3 0-- / /\/ H2C=C catalyseur ' ' H2CO \ / O H HQCZCH2 + CH3OH + CO OCH3 MMA Figure 3 Synthèse du MMA par catalyse homogène 2017-05--08 11:10:07 Page 3/12 (°°) BY--NC-SA La première étape de cette synthèse met en oeuvre un catalyseur organométallique s'inspirant de ceux utilisés dans l'hydroformylati0n des alcènes (procédé 0x0). II.A * De l'hydrofw'mylation de l'éthène à sa mêthooeycarb0nylatian L'hydroformylati0n de l'éthène consiste a faire réagir l'éthène avec du dihydrogène et du monoxyde de carbone en présence d'un catalyseur organométallique pour obtenir du propanal. L'équation de réaction modélisant l'hydroformylation de l'éthène est écrite figure 4. /\/H HgC=CH2 + H2 + CO catalyseur ' 0 Figure 4 Hydroformylation de l'éthène Le cycle catalytique de la réaction d'hydroformylati0n est partiellement représenté sur la figure A du document réponse (à rendre avec la copie). Quelques précisions sont données sur ce cycle catalytique : -- aucune décomplexation de ligand triphénylphosphine (PPh3) n'est observée ; -- le nombre d'oxydation du rhodium est le même dans tous les complexes sauf dans le complexe @ ; -- le rhodium possède quatre ligands dans le complexe ë. II.A.1) En écrivant directement vos réponses sur le cycle catalytique représenté figure A, donner la structure des complexes Z, & et @ (sans se soucier de la stéréochimie autour du métal) ainsi que la nature des espèces « entrantes » ou « sortantes » lors des étapes (c), (e) et (f). Par analogie, le remplacement du dihydrogène du procédé d'hydroformylation de l'éthène par un alcool peut permettre l'obtention d'un ester a la place de l'aldéhyde. II.A.2) Modifier (sans le réécrire complètement) le cycle catalytique précédent pour rendre compte de la synthèse du propanoate de méthyle, le rhodium étant conservé comme catalyseur. Cette transformation a effectivement été mise au point par l'équipe de R. P. TOOZE, puis les chercheurs ont mené une étude expérimentale sur des complexes du palladium pour choisir entre deux mécanismes limites pour la méthoxycarb0nylation de l'éthène : celui qui vient d'être proposé, appelé « mécanisme par hydrure » et un autre, représenté dans le document 1 du document réponse, appelé « mécanisme par alkoxycarbonyl ». II.A.3) Les résultats expérimentaux présentés dans le document 1 permettent--ils de valider le « mécanisme par hydrure » ou le « mécanisme par alkoxycarbonyl » pour la méthoxycarbonylati0n de l'éthène '? II.A.4) Proposer une interprétation pour rendre compte de la formation de la chaine 3--oxopentyl présente dans le cation 3--oxopentyltriphénylphosphonium. II.B -- Synthèse du méthacrylate de méthyle II.B.1) Lors de la synthèse du propanoate de méthyle par méthoxyearbonylation, tous les constituants sont gazeux. Une pression élevée est--elle favorable à la synthèse ? II.B.2) La seconde étape du procédé industriel met en jeu le propanoate de méthyle et le méthanal afin d'obtenir le méthacrylate de méthyle. Proposer des conditions expérimentales et un mécanisme réactionnel pour cette transformation. III Propriétés du polyméthacrylate de méthyle La principale utilisation du méthacrylate de méthyle (MMA) est la fabrication du polyméthacrylate de méthyle (PMMA) dont la consommation mondiale a été estimée à 1,7 millions de tonnes en 2012. Le procédé de poly-- mérisation du MMA a été découvert dès 1877 par les chimistes allemands FITTIG et PAUL. Un autre chimiste allemand Otto RÔHM a breveté en 1933 la marque Plexiglas® et a lancé la première production commerciale de PMMA. La polymérisation du MMA se fait suivant trois procédés : par coulée, en suspension et en masse. Le procédé par coulée permet d'obtenir des plaques de forte épaisseur. C'est ce procédé qui est mis en oeuvre en France par la société Arkema dans l'usine de sa filiale Altuglas située à Saint--Avold. III.A -- Structure et propriétés du PMMA Le PMMA est obtenu par polymérisation radicalaire du MMA. Cette polymérisation conduit a un polymère ramifié dont l'enchainement partiel est représenté figure 5. CH3 | | . R R R R R R Figure 5 MMA et enchainement partiel du PMMA 2017--05--08 11:10:07 Page 4/12 Î(cc BY--NC-SA III.A.1) Donner la structure de R et indiquer l'unité de répétition du PMMA. III.A.2) La figure 6 représente la courbe de distribution1 des masses molaires pour le PMMA, pour le PMMA après allongement de chaine avec un temps de réaction de 77 h et pour le PMMA après allongement de chaine avec un temps de réaction de 115 h. Quelle est, qualitativement, l'influence de l'accroissement de la chaine du PMMA sur l'indice de polymolécula-- rité ? -- PMMA -- -- -- PMMA allongement 77h ------- PMMA allongement 115h N (nombre de macromolécules) 3 3,2 3,4 3,6 3,8 4 4,2 4,4 4,6 4,8 5 5,2 5,4 logM (M : masse molaire de la macromolécule) Figure 6 Courbe de distribution des masses molaires pour le PMMA III.A.3) Le document 2 du document réponse regroupe différentes analyses relatives au PMMA. A l'aide de ce document et de vos connaissances, répondre aux questions suivantes en explicitant votre raisonnement ou votre démarche. a) Le PMMA est--il un polymère amorphe ou semi--cristallin ? b) Évaluer la température de transition vitreuse du PMMA. c) Certains double--décimètres des fournitures scolaires sont en PMMA. Que se passe--t--il si on tente de plier le double décimètre a 20 °C '? Qu'en est--il avec un double--décimètre sorti d'un réfrigérateur '? d'une étuve a 60 °C ? d) Quelle est la propriété remarquable du PMMA a l'origine de ses principales utilisations ? Citer quelques--unes de ces utilisations. @) Quel est l'influence de l'ajout de nanoparticules Ag/C(graphite) sur les propriétés physiques du PMMA composite '? Quel peut être l'intérêt pratique a ajouter des nanoparticules Ag / C(graphite) au PMMA composite ? III.B * Modulation de la température de transition vitreuse du PMMA L'influence du méthacrylamide (MAM) en tant que comonomère sur la température de transition vitreuse du copolymère poly(MMA--co--MAM) a été étudiée. CH3 Figure 7 Méthacrylamide (MAM) Les copolymères ont été obtenus par copolymérisation radicalaire de MMA avec du MAM. On obtient des copolymères statistiques. L'enchainement partiel est le même que celui du PMMA mais R représente aléatoire-- ment le groupe fonctionnel ester ou le groupe fonctionnel amide. Les produits ont été caractérisés par analyse élémentaire, par infrarouge et par RMN du proton. L'analyse élémentaire du copolymère permet de déterminer le pourcentage massique en azote. Les températures de transition vitreuse des différents copolymères ont été déterminées. L'ensemble des résultats est rassemblé dans le tableau 1. http://file.seirp.org/Html/2--1800022_22207.htm Svetlana A. Bulgakova*, Evgeniya S. Volgutova, Irina E. Khokhlova Open Journal of Polymer Chemistry Vol.2 No.3(2012) 2017-05--08 11:10:07 Page 5/12 (C<ä BY--NC-SA Fraction molaire en unités MAM 0 0,09 0,15 0,32 0,45 0,56 1 Fraction massique en unités MAM 0 0,08 0,13 0,29 0,41 0,52 1 Tg (°C) 100 126 149 203 227 244 251 Tableau 1 III.B.1) Montrer que le pourcentage massique en azote obtenu par ana-yse élémentaire permet de déterminer la valeur de la fraction molaire en unités MAM dans le copolymère poly(MMA--co--MAM). III.B.2) Expliquer l'évolution de la température de transition vitreuse du tableau 1. Conclure. IV Synthèse d'une hormone juvénile IV.A * Schéma général de la synthèse En 1970, MEYER et HANZMANN ont isolé, a partir de la soie d'un papillon de nuit Hyalophom cecmpia, un mélange d'hormones juvéniles, hormones contrôlant le développement post--embryonnaire des insectes. En 1971, la configuration des centres stéréogènes du groupe caractéristique époxy de l'hormone juvénile Cécropia a été clairement identifiée? \ \ 0/ Figure 8 Hormone juvénile Cécropia En 1973, FAULKNER et PETERSON ont proposé une synthèse stéréosélective de l'hormone juvénile Cécropia3. Leur stratégie de synthèse a consisté à construire 3 unités (A, B, C) à 6 atomes de carbone dans le squelette carboné et a les assembler tout en contrôlant la stéréochimie des centres stéréogènes. O ... OMe / l / HO OMe OMe OMe OH A B C Figure 9 Unités A, B et C IV.A.1) Donner les descripteurs stéréochimiques des centres stéréogènes de l'hormone juvénile Cécropia. IV.A.2) Repérer sur la molécule de l'hormone juvénile Cécropia, représentée figure B du document réponse, les parties de la molécule provenant des unités A, B et C. IV.B * Synthèse de l'unité A Le produit de départ est un dérivé du MMA, la méthacroléine 1 (figure 10). 70 Figure 10 Méthacroléine 1 Le protocole de synthèse de l'unité A mis en oeuvre est le suivant. -- Du cyanure de sodium NaCN (40 g) et du diéthyléther anhydre (500 mL) sont placés dans un tricol de 1 L sur lequel sont adaptés un réfrigérant et deux ampoules de coulée. -- De l'acide éthanoi'que (48 mL) et de la méthacroléine fraichement distillée (33,0 g) sont ajoutés séparément, mais simultanément, sous vive agitation durant 30 minutes. 2 Proc Natl Acad Sci U S A. 1971 Sep; 68(9): 2312*2315 3 Faulkner D. J., Peterson R. M., J. Am. Chem. Soc. 1973, 95, 553 2017-05--08 11:10:07 Page 6/12 «:_ -- La température du milieu réactionnel est maintenue à 20 °C avec un bain d'eau. Le milieu réactionnel est agité toute la nuit, puis filtré sous vide pour éliminer l'éthan0ate de sodium. -- Le solvant est éliminé à l'évaporateur rotatif. On récupère le composé 2. Le spectre IR du composé 2 comporte une large bande a 3440 cmf1 et une fine bande a 2250 cm"'. Le spectre RMN du proton du composé 2 présente un singulet a 1,67 ppm intégrant pour 3H, un singulet large à 4,25 ppm intégrant pour 1H, un multipth a 4,83 ppm mal résolu intégrant pour 2H, un singuth à 5,10 ppm intégrant pour lH. -- Le composé 2 est ensuite dissous dans du méthanol sec (250 mL). Du chlorure d'hydrogène sec est mis a buller dans la solution durant 15 minutes. -- La solution est ensuite portée à reflux durant 6 heures, refroidie et versée dans une solution froide de chlorure d'ammonium. -- Le mélange est extrait avec du dichlorométhane. Les phases organiques sont rassemblées pour être séchées sur sulfate de magnésium anhydre. Le solvant est évaporé et le résidu est distillé sous pression réduite. On obtient 27,4 g de l'unité A (température d'ébullition 114416 °C sous 25 mbar). Le spectre IR de l'unité A comporte une large bande a 3500 cm"1 et une bande intense a 1735 cm"'. Le spectre RMN du proton de A présente un singulet a 1,42 ppm intégrant pour 3H, un singulet a 3,40 ppm intégrant pour 3H, un singulet a 4,05 ppm intégrant pour 1H, un singulet large à 4,30 ppm intégrant pour 1H et un multiplet mal résolu à 4,66 ppm intégrant pour 2H. IV.B.1) Proposer une structure pour le composé 2 compatible avec les données spectroscopiques fournies. IV.B.2) Dans les données figurent des informations sur quelques orbitales moléculaires de la méthacroléine. La réaction conduisant à la formation du composé 2 a partir de la méthacroléine est--elle sous contrôle frontalier '? IV.B.3) La formation du composé 2 n'est possible que si la méthacroléine est fraichement distillée. On observe en effet la formation de dimère au cours du temps. Proposer une structure pour le dimère et justifier le rôle de la distillation préalable de la méthacroléine. IV.B.4) Pourquoi la distillation du résidu contenant l'unité A a--t--elle été réalisée sous pression réduite ? IV.B.5) Attribuer les signaux observés en spectroscopie IR et RMN du proton pour le composé A. IV.C * Synthèse de l'unité C L'unité C est obtenue à partir du 3--méthylpent--l--yn--3--ol en solution dans le méthanol sec placé en présence d'acide trifiuor0éthanoÏque et d'oxyde mercurique. Afin de contrôler la stéréochimie du groupe caractéristique époxy lors de la synthèse de l'hormone, il est nécessaire de travailler avec du 3--méthylpent--l--yn--3--ol optiquement pur. Pour cela, une résolution racémique du 3--méthylpent--l--yn--3--ol a été mise en oeuvre. -- Première étape Le mélange racémique du 3--méthylpent--l--yn--3--ol (82,0 g, 0,835 mol), la pyridine (1,65 mol) et l'anhydride phtalique (0,878 mol) sont chauffés sous agitation durant 7 heures a 90 °C. La solution refroidie est acidifiée avec de l'acide chlorhydrique a 3 mol-Li1 et extraite avec une solution d'hydrogénoearbonate de sodium saturée (2 >< 100 mL). La phase aqueuse est lentement acidifiée avec de l'acide chlorhydrique a 3 mol-L"1 et est extraite par du chlor0forme (trichlor0méthane). La phase organique est séchée et évaporée pour conduire à un solide dont la recristallisati0n dans le benzène conduit à des cristaux incolores (température de fusion 94--96 °C). On isole ainsi le composé 3 obtenu avec un rendement de 27%. -- Deuxième étape Le composé 3 (0,22 mol) et la brucine (0,22 mol) sont dissous a chaud dans une solution propanone/méthanol (20 : 1) et on procède à six cristallisations fractionnêes successives. Les cristaux issus de la troisième cristal-- lisation ont une température de fusion comprise entre 109 °C et 130 °C, ceux de la cinquième cristallisation ont une température de fusion comprise entre 115 °C et 135 °C et ceux de la sixième recristallisation ont une température de fusion comprise entre 135 °C et 150 °C. -- Troisième étape Le sel de brucine ainsi recueilli est décomposé par traitement à l'acide chlorhydrique dilué. Le composé 3 résolu est extrait par le diéthyléther. Après recristallisati0n, on obtient le (S)--(+)--3. -- Quatrième étape Le (S)--(+)--3 (16,3 mmol) est dissous dans une solution d'hydroxyde de potassium (K+, OH") a 10 mol-L" et agité durant 30 minutes. Le milieu réactionnel est ensuite versé dans le diéthyléther. La phase organique est lavée à l'eau, séchée sur sulfate de magnésium anhydre et distillée pour conduire au (S)--(+)--3--méthylpent--l-- yn--3--ol. Ce protocole permet, à l'aide d'étapes complémentaires, de récupérer aussi le (R)--(--)--3--méthylpent--1--yn--3--ol. 2017-05--08 11:10:07 Page 7/12 l@_ % \ // OH N \\ 3--méthylpent--l--yn--3--ol pyridine anhydride phtalique brucine Figure 11 Réactifs mis en jeu dans les différentes étapes de la synthèse de l'unité C IV.C.1) Donner une représentation topologique du composé 3 obtenu lors de la première étape ainsi que le mécanisme réactionnel qui a conduit a sa formation. IV.C.2) Quel est le rôle, dans la première étape, de l'acidification du milieu réactionnel par l'acide chlorhydrique a 3 molL"1 '? IV.C.3) Pourquoi, dans la première étape, l'ajout de la solution saturée d'hydrogénocarbonate de sodium constitue--t--il une extraction '? IV.C.4) Quel est le rôle de l'acidification, par l'acide chlorhydrique a 3 mol'Lfl, de la phase aqueuse obtenue après extraction dans la première étape '? Pourquoi l'ajout de l'acide chlorhydrique doit--il se faire lentement '? IV.C.5) Justifier la formation d'un sel de brucine lors de la deuxième étape. IV.C.6) Justifier le protocole mis en oeuvre lors de la troisième étape. IV.C.7) Nommer la transformation mise en jeu lors de la quatrième étape et en donner le mécanisme réaction-- nel. IV.C.8) Décrire le principe de la résolution racémique et l'illustrer sur l'exemple de la résolution du 3--méthylpent--l--yn--3--ol. IV.C.9) Quelles étapes complémentaires permettraient de récupérer le (R)--(--)--3--méthylpent--1--yn--3--ol '? I V.D * Réarrangement de CLAISEN L'assemblage des unités A, B et C a été mené à bien via deux réarragements de CLAISEN au cours desquels les deux double liaisons C=C des carbones (3--2 et C--6 de l'hormone juvénile Cécropia ont été formées. Il était essentiel de contrôler, lors de ces étapes, la configuration de la double liaison C=C. FAULKNER et PETERSON ont donc cherché les facteurs qui déterminent la stéréochimie du réarrangement de CLAISEN. Pour cela, ils ont réalisé, à partir de différents alcools vinyliques disubstitués notés 4a, 4b et 40, des synthèses mettant en jeu des réarrangements de CLAISEN. R1 Alcool vinylique disubstitué R1 R2 R2 411 CH3 CH2CH3 / 4b CH3 CH(CH3)2 OH 4C CHQCH3 CHQCH3 Tableau 2 Ces alcools ont été traités par l'éthylvinyl éther en présence d'acétate de mercure pour conduire, par transéthé-- rification, aux allylvinyl éthers 5a, 5b et 5e. Le réarrangement de CLAISEN, effectué par pyrolyse en tube scellé, des allylvinyl éthers a conduit a un mélange de deux stéréoisomères des aldéhydes y--ô--insaturés Ga, 6b et 6e. Le schéma général des synthèses est représenté figure 12. L'étape de pyrolyse a été suivie par RMN du proton et la proportion des deux stéréoisomères Z et B des aldéhydes y--5--insaturés Ga, 6b et 60 a été déterminée par chromatographie en phase gaz. Les résultats sont rassemblés dans le tableau 3. IV.D.1) Proposer une synthèse de l'alcool vinylique 4a à partir du MMA. IV.D.2) Proposer un mécanisme réactionnel pour le réarrangement de CLAISEN (passage de 5 à 6). IV.D.3) Expliquer pourquoi la spectroscopie RMN du proton permet le suivi du réarrangement de CLAISEN. IV.D.4) FAULKNER et PETERSON ont proposé un état de transition cyclique pour le réarrangement de CLAISEN. Deux états de transition (ET1 et ET2 représentés figure 13) sont envisagés suivant la stéréochimie de l'aldéhyde v--6--insaturé obtenu. Montrer que ces deux états de transition conduisent à des stéréoisomères différents. 2017--05--08 11:10:07 Page 8/12 Îc_ R2 / OH 4a, 4b, 40 alcool vinylique disubstitué OJ a / éthylvinyl éther (CH3000) 2Hg O Transéthérification \/ 5a, 5h, 5(: allylvinyl éther pyrolyse Réarrangement de CLAISEN \R2 /O Ga, 6h, 60 aldéhyde 7--ô--insaturé Figure 12 Synthèse d'aldéhydes 7--5--insaturës a partir d'alcools vinyliques disubstitués Alcool Transformation Température (°C) Rapport Z : E 4a 5a--6a 110 10 : 90 4a 5a--6a 205 14 : 86 4h 5b--6b 110 7 : 93 4c 5c--6c 110 10 : 90 Tableau 3 R1 R1 Lo- - \ R2 L... ET1 ET2 Figure 13 États de transition pour le réarrangement de CLAISEN IV.D.5) Pour interpréter leurs résultats expérimentaux, FAULKNER et PETERSON ont supposé que la proportion des deux états de transition est imposée par la constante d'équilibre thermodynamique entre ces deux états de transition. Ils ont estimé que la valeur de l'enthalpie libre standard de réaction de ET1 : ET2 (figure 14 à gauche) est identique a celle de la réaction de conversion entre les conformères des cyclohexanes monosubstitués %? %... R2 (figure 14 a droite). R1 R1 L...Y EUR L...jæ ET2 R2 ET Figure 14 Équations de réaction entre états de transition et entre conformères 1 Ils ont utilisé les valeurs des enthalpies libres standard de réaction à 298 K, trouvées dans la littératureä pour les réactions de conversion entre les conformères des cyclohexanes monosubstitués (tableau 4). Ils ont par ailleurs supposé que, pour la réaction ET1 : ET2, le terme entropique est négligeable devant le terme enthalpique. Substituant R2 A,G° (kJ -mol*1) CH3 --7,5 CH2CH3 --7,5 CH(CH3)2 --8,8 Tableau 4 Le modèle proposé par FAULKNER et PETERSON est--il en accord avec les résultats expérimentaux '? Une réponse quantitative est attendue. 4 N. L. Allinger, L. AL Friedberg , J. Org. Chem., 31, 804 2017-05--08 11:10:07 Page 9/12 (cc)-- IV.E * Synthèse de l'hormone juvénile Cécropia L'assemblage des unités A et B se fait a 1 10 °C dans le toluène en présence d'acide paratoluènesulfonique (APTS). La catalyse acide permet la formation in situ, a partir de l'unité B, de l'éther vinylique 7. La transéthérification de l'éther vinylique 7 sur l'unité A permet la formation d'un nouvel éther vinylique 8 dont le réarrangement de CLAISEN conduit au cétoester 9. Le cétoester 9 est aussitôt traité par le tétrahydroborate de sodium dans le méthanol a 0 °C pour conduire au composé 10. / OMe Figure 15 Éther vinylique 7 IV.E.1) Donner une représentation topologique des composés 8, 9 et 10. L'assemblage de l'unité C, dont le centre stéréogène est de configuration S, au composé 10 se fait de la même manière. Le composé 10 et l'unité C sont placés à 110 °C dans le toluène en présence d'acide paratoluènesul-- fonique (APT S) pour former l'éther vinylique 11 dont le réarrangement de CLAISEN conduit au composé 12. Le composé 12 est aussitôt traité par le tétrahydroborate de sodium dans le méthanol a 0 °C pour conduire à un mélange de stéré--oisomères 13. Les stéréoisomères sont séparés ; le traitement du stéréoisomère de confi-- guration (108, 118) par un équivalent de chlorure de tosyle (TsCl) dans la pyridine conduit a un mélange 14. Le traitement de 14 par le méthanolate de sodium dans le méthanol conduit, entre autre, a l'hormone juvénile Cécropia. Figure 16 Composé 12 IV.E.2) Donner une représentation topologique spatiale du composé 11. IV.E.3) Donner une représentation topologique spatiale des stéréoisomères 13 et indiquer la relation de sté-- réoisomérie qui les lie. IV.E.4) Donner le mécanisme réactionnel de la formation de l'hormone juvénile Cécropia a partir d'un des composés du mélange 14. IV.E.5) Justifier le fait que l'hormone juvénile Cécropia ne puisse pas être obtenue exclusivement. 2017-05--08 11:10:07 Page lÛ/12 lë'_ Données Eætrait du tableau périodique Numéro atomique 1 6 7 8 16 17 56 Symbole H C N O S Cl Ba Masse molaire atomique (gmol") 1,01 12,0 14,0 16,0 32,1 35,5 137 Gmndeurs thermodynamiques (à 298 K) Constante des gaz parfaits : R : 8,31 J'mo'fl-Kf1 Masse molaire Température d'ébullition AfH° (g-molfl) (°C sous 1bar) (kJ-molÿ1) 2--hydroxy--2--méthylpr0pan0nitrfle (f) 85 --120 2--hydroxy--2--méthylpr0panamide (EUR) 103 --470 MMA 100 100,5 1120 (EUR) 18 100,0 --290 CH30H 32 65,0 H2804 98 (NH4)QSO4 132 Eau et solutions aqueuses 73 g dans 100 g d'eau pKS(BaSO4) : 10 Solubilité du sulfate d'ammonium à 10 °C Produit de solubilité du sulfate de baryum a 298 K Solubilité du chlorure de baryum à 298 K 360 g-LÎ1 Solubilité du dioxyde de carbone gazeux a 298 K 0,04 molLf1 Enthalpie standard de dissolution des cristaux de sulfate d'ammonium a 298 K 11,1 kJ .mol*1 Capacité massique thermique des solutions aqueuses de sulfate d'ammonium à 298 K 3,0 kJ -kg"-Kf1 Enthalpie massique de vaporisation de l'eau a 100 0C 2,26 >< 103 kJ-kgÎ1 Constantes d'acidité (à 298 K) COjaq)/HCOË(aq) HCOË(aq)/COË'(aq) ion pyridinium (aq)/pyridine (aq) RCOgH(aq)/RCOQ(aq) pKa 6,3 10,2 5,2 4 à 5 RaNH+(aQ)/RsN(w) NHÎ(äQ)/NHa(aq) H2804(aq)/HSOÂ(M) HSOÂ(äQ)/SOÎOEq) pKa 9 à 10 9,2 acidité forte 1,9 Données spectroscopiques Infrarouge : nombre d'onde de vibration de quelques liaisons . . OH * C : O C : O * Liaison (alcool) C = N (ester) (aldéhyde conjugué) C -- C 1/ (cm"1) 3200--3600 2240--2260 1700--1740 1680--1690 1640--1690 forte -- large moyen fort fort moyen RMN ] H : déplacement chimique de quelques protons (proton correspondant noté en gras) C=C--H --CH2--OH NEC--CH O=C--CH C=C--C--H 4,6 -- 8,0 ppm 0,5 -- 5,5 ppm 2,2 -- 3,0 ppm 2,0 -- 4,0 ppm 1,3 -- 2,0 ppm , O=C--H O:C--O--CH "CH " OH C Longueur d'onde (nm) Spectres de transmission du polyméthaerylate de méthyle (PMMA), du polychlorure de vinyle (PVC), du polystyrène (PS), du TPX RT 18 (copolymère organique), du verre et du quartz 80 A 4 °C 60 ? D-« 20 °C â 30 °C @ '-° 40 :: o -æ 40 C f: a o O - - - 60 °C 0 - > 0 5 10 15 20 25 30 125 130 135 Extension (%) Influence de la température sur les propriétés mécaniques en traction du PMMA 1010 --PMMA -- -- -- PMMA avec 0,025% Ag/C 9 '.1__'_'_"_'_';; ....... _ " ' ' PMMA avec 0,050% Ag/C â ... " - -----PMMA avec 0,100% Ag/C ; E ? 108 @ Æ ;: @ o 2 107 106 ' ' " _ 20 40 60 80 100 120 140 160 180 200 Température (°C) Evolution du module d'Young du PMMA avec la température et influence de l'ajout de nanopar-- ticules Ag/C(graphite) (à 0,025% en masse, 0,050% en masse et 0,100% en masse) LÊ âä n @ ËË \ â...ä ... 33 fiOoeNQOEZV 855% quE% ... ËH:Ë D...... 9 ,...-- QOBËËrÆ ËËÉËËO ÈÊ ä8 ... ....Q ËË Ë...... ... ......3 âoeflâë ...Ê%oe D...... ËH m-- ËBOEoÊ>OE Tëoex mmom H NQ ËËQ Ëoefi H 35 w@UX® @ mOEZ «OOENQOEZV moBEooe @@ Ë...ä È.Ë ...î: " ......Q Ë...ä EURÊË âm EUR «Om«OE7© moeËEDÆ ...ËËwED mOEZ A...ËÆoEV äQoe mOEZ ÊËÆQQC âmd :æoe oew5oeäoæ mofifiooe @ mOEZ + ä< fiOoeNOE AwOOEOEËOEZ 2--hydroxy--2--méhylpropanenitrfle mOEZ Ê...Æofiv âm...o /l\ mOEZ 8355 + ë< oËQ Eoem... AOEOmOEO woe...ëË +V > âm ... êæË @@ Ë...ä 13 0on u «@ ËË mo...mo $$... n 3 mo...mo Æ... %> m 53% ......Êâ %... n 3 ËË mo :...æ Ë=ËQ 3 &...... H 3 @@ @ îä & <22 ... êæ...Æ oeQ ËË LE 3% n 5 ËË ...... @@ ...ä... v 3 mo wow ËæË OE>Ë ( v mm @5> Ê...... n 3 mo......mo @ H @... <ËËÆ @ H: .Q Figure C Schéma de l'unité de production en continu du méthacrylate de méthyle

Extrait du corrigé obtenu par reconnaissance optique des caractères


 Centrale Chimie PC 2017 -- Corrigé Ce corrigé est proposé par Claire Besson (docteur en chimie) ; il a été relu par Augustin Long (ENS Lyon) et Christelle Serba (docteur en chimie). Ce sujet étudie le méthacrylate de méthyle, qui sert principalement de précurseur à la synthèse du polyméthacrylate de méthyle, un polymère plus connu sous le nom de plexiglas. · La première partie, qui est aussi la plus longue et la plus difficile, s'intéresse à la production industrielle du méthacrylate de méthyle. Contrairement aux processus étudiés en général en classes préparatoires, cette synthèse s'effectue en continu. Quelques questions proches du cours se mêlent dans cette partie à des questions beaucoup plus atypiques et demandant une prise d'initiative notable. · La deuxième partie, très courte, est un exercice de chimie organométallique classique dont le thème est une méthode de synthèse alternative du méthacrylate de méthyle utilisant un catalyseur au rhodium. · La troisième partie, relativement courte, est un mélange de questions de cours et d'analyse de documents concernant le polyméthacrylate de méthyle. · La quatrième et dernière partie étudie la synthèse d'une hormone juvénile d'un papillon de nuit, et n'est liée que de très loin au méthacrylate de méthyle (un des réactifs de départ peut être obtenu à partir de ce dernier). Les questions ne sont pas véritablement difficiles mais l'énoncé est foisonnant et une lecture attentive était nécessaire pour trouver les informations utiles. Ce sujet est long et présente plusieurs questions difficiles. En revanche, les différentes parties et sous-parties sont indépendantes, ce qui permettait de ne jamais rester bloqué. Indications Partie I I.A.2 La première étape fait intervenir une molécule d'eau, d'origine non précisée dans l'énoncé. I.A.3 Calculer l'enthalpie de réaction à partir des données de la fin de l´énoncé. I.A.6 Dans un système ouvert comme celui présenté ici, la loi de conservation de la masse est remplacée par une conservation de débit. De même, les débits molaires remplacent les nombres de moles dans l'application des relations stoechiométriques. I.B.1.e Deux paramètres doivent être obtenus pour répondre à cette question : la fraction molaire en MMA dans la phase aqueuse, qui peut être lue directement sur le diagramme binaire, et la masse de la phase aqueuse, qui demande l'application du théorème des moments chimiques. I.B.1.f Quelle est la proportion maximale de MMA que l'on peut obtenir dans le distillat ? I.B.1.g Utiliser la conservation du débit de MMA. I.B.2.a Le diagramme présente un azéotrope. I.C.1.b Les valeurs de pKa sont données en fin d'énoncé. I.C.2.f La puissance thermique nécessaire à un processus est calculée par P = |DHm | > 0 avec D le débit de matière et Hm l'enthalpie massique correspondant au processus. Deux types d'enthalpies sont à considérer : celles résultant d'une variation de température et celles qui correspond à une transformation physicochimique. Partie II II.A.4 La chaîne oxopentyle est formée par la réaction de deux molécules d'éthène et d'une molécule de monoxyde de carbone. Partie III III.B.2 La température de transition vitreuse est liée à l'intensité des interactions entre chaînes de polymère. Partie IV IV.A.2 Les unités B et C sont difficiles à départager. On peut s'aider des informations données par l'énoncé à la question IV.E.1. IV.B.2 La méthacroléine présente deux sites électrophiles. IV.C.1 La réaction est une estérification. IV.D.2 Cette réaction péricyclique présente un mécanisme qui se rapproche de celui d'une réaction de Diels-Alder. IV.D.5 Calculer la constante d'équilibre pour l'échange entre les deux états de transition. IV.E.1 Il est avantageux pour répondre à cette question de garder à l'esprit la structure du produit final, et de numéroter les atomes de carbone pour être sûr de n'en oublier aucun ! IV.E.2 L'éther de vinyle qui réagit avec 10 est à C ce que 7 est à B. I. Procédé de production en continu du méthacrylate de méthyle I.A.1 Le bilan de la réaction de synthèse du MMA est (H3 C)2 C(OH)CN + CH3 OH + H2 SO4 = H2 CC(CH3 )C(O)OCH3 + (NH4 )HSO4 Les quantités de réactifs ni requises pour l'obtention d'une tonne de produit sont obtenues suivant la formule ni = mi /Mi avec mi la masse du réactif i et Mi sa masse molaire, fournie en fin d'énoncé. On calcule ainsi 970 n(H3 C)2 C(OH)CN = = 1,1.104 mol 85,0.10-3 et nCH3 OH = 380 = 1,2.104 mol 32,0.10-3 nH2 SO4 = 1700 = 1,7.104 mol 98,1.10-3 d'où l'on peut déduire que le réactif limitant est le 2-hydroxy-2-méthylpropanenitrile. Le choix du nombre de chiffres significatifs est délicat ici. Les masses molaires sont données directement avec deux chiffres significatifs dans le deuxième tableau en fin d'énoncé, mais peuvent facilement être calculées avec trois à partir des masses molaires des atomes données dans le premier tableau. Par ailleurs, doit-on lire la masse de 970 kg donnée par l'énoncé comme 9,7.102 kg ou 9,70.102 kg ? L'énoncé donne « environ 970 kg », on peut donc choisir de n'utiliser que deux chiffres significatifs. Le rendement de la réaction est donc = nMMA n(CH3 )2 C(OH)CN = mMMA M(H3 C)2 C(OH)CN 1000 × 85.10-3 = = 0,88 m(H3 C)2 C(OH)CN MMMA 970 × 100.10-3 I.A.2 La réaction qui prend place dans le réacteur R1 est une hydrolyse partielle de la fonction nitrile, dont le bilan est (H3 C)2 C(OH)CN + H2 O = (H3 C)2 C(OH)C(O)NH2 Cette réaction est suivie, dans le réacteur R2 , d'une déshydratation de la fonction alcool pour obtenir un alcène, avec pour bilan (H3 C)2 C(OH)C(O)NH2 = H2 O + H2 CC(CH3 )C(O)NH2 En réalité, les fonctions amide du 2-hydroxy-2-méthylpropanamide et du méthacrylamide sont protonées en milieu acide sulfurique concentré, et les composés formés dans les réacteurs R1 et R2 sont en réalité [(H3 C)2 C(OH)C(O)NH3 ] HSO4 et [H2 CC(CH3 )C(O)NH3 ] HSO4 . Notons également que la provenance de l'eau réagissant dans le premier réacteur n'est pas claire. Pour s'affranchir de ce réactif, on pourrait donner le bilan de réaction (H3 C)2 C(OH)CN + H2 SO4 = (H3 C)2 C(OH)C(O)NH2 + SO3 mais on se trouverait alors embarrassé pour répondre à la prochaine question. I.A.3 L'enthalpie standard de réaction r H1 correspondant à la réaction qui a lieu dans le premier réacteur peut être calculée, grâce à la loi de Hess, à partir des enthalpies de formation des réactifs et produits de cette réaction. On a r H1 = f H(H3 C)2 C(OH)C(O)NH2 - f H(H3 C)2 C(OH)CN - f HH2 O = -470 + 120 + 290 = -60 kJ.mol-1 La réaction est exothermique, et le contenu du réacteur R1 doit donc être refroidi pour maintenir une température constante. I.A.4 L'hypothèse la plus vraisemblable pour l'utilisation des deux réacteurs successifs est que les conditions optimales de température sont différentes pour les deux étapes de la réaction. Une élimination en continu de l'eau du deuxième réacteur pour l'introduire dans le premier aurait pour effet de déplacer les équilibres des deux réactions. Toutefois, en l'absence d'indication en ce sens sur la figure C, cette hypothèse ne peut être proposée ici. I.A.5 Le bilan de la réaction prenant place dans le réacteur R3 est H2 CC(CH3 )C(O)NH2 + CH3 OH + H2 SO4 = H2 CC(CH3 )C(O)OCH3 + (NH4 ) HSO4 Il rend compte de l'obtention du MMA et de l'hydrogénosulfate d'ammonium en sortie du réacteur R3 . L'utilisation d'un excès d'acide sulfurique, démontré à la question I.A.1, garantit la formation des espèces protonées NH4 + et HSO4 - et non de leurs bases conjuguées respectives. Elle explique aussi la présence d'acide sulfurique dans l'effluent, tandis que l'excès de méthanol explique la présence de cette dernière espèce dans l'effluent. Enfin, la présence d'eau est liée à la réaction qui a lieu dans le réacteur R2 (question I.A.2). I.A.6 D'après le bilan de la réaction qui a lieu dans le réacteur R3 , indiqué à la question I.A.5, une mole de méthanol est consommée pour chaque mole de MMA produite. Le débit molaire de méthanol réagissant est donc égal au débit molaire sortant de MMA Dmol, MMA = 0,56 DA MMMA ce qui permet de calculer le débit massique de méthanol réagissant Dréaction = 0,56 DA MCH3 OH MMMA Le débit entrant de méthanol est ainsi Dentrant = Dréaction + Dsortie = 0,56 DA Dentrant Finalement, Dentrant MCH3 OH + 0,36 DA MMMA MCH3 OH = 0,56 + 0,36 DA MMMA 32,0 = 0,56 + 0,36 × 2100 = 1,1.103 kg.h-1 100