CCP Physique 2 MP 2012

Thème de l'épreuve Télescopes en association. Aspects optiques du satellite Hubble. Électronique du teslamètre. Phénomènes de lévitation.
Principaux outils utilisés optique géométrique et ondulatoire, électrocinétique, conducteurs en équilibre électrostatique, magnétostatique
Mots clefs interférométrie, lentille de Fresnel, AO, amplificateur opérationnel, interféromètre de Sagnac, lévitation électrostatique, lévitation magnétique

Corrigé

(c'est payant, sauf le début): - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Extrait gratuit du corrigé

(télécharger le PDF)
           

Énoncé complet

(télécharger le PDF)
                                            

Rapport du jury

(télécharger le PDF)
              

Énoncé obtenu par reconnaissance optique des caractères


SESSION 2012 MPP2008 EPREUVE SPECIFIQUE - FILIERE MP ____________________ PHYSIQUE 2 Durée : 4 heures ____________________ N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre. ___________________________________________________________________________________ Les calculatrices sont autorisées Le sujet comporte quatre parties indépendantes. Les parties I et II portent sur l'optique (de la page 2 à la page 8). Les parties III et IV portent sur l'électromagnétisme (de la page 9 à la page 15). 1/15 Tournez la page S.V.P. OPTIQUE Les notations sont telles que tout paramètre relatif à un objet sera indicé avec un o tandis que tout paramètre lié à une image le sera par un i. Les questions à l'intérieur des parties I et II sont largement indépendantes. PARTIE I. TÉLESCOPES AU SOL ET EN ASSOCIATION Le premier des quatre principaux télescopes du « Très Grand Télescope » (acronyme anglo-saxon VLT) installé au sommet du Cerro Paranal, au Chili, a été prénommé Antu (Soleil en langue mapuche) et a été mis en service en 1998. Comme tous les télescopes du VLT, il est de type Ritchey - Chrétien, avec un des quatre foyers de type Cassegrain. On étudiera un montage interférométrique à deux télescopes. Outre le télescope Antu du VLT, appelé T1 par la suite, le montage considéré inclut également Kueyen (Lune en langue mapuche), télescope mis en service en 1999 et appelé T2. E2 (x2) E1(x1) x D H T2 T T1 Figure 1 : montage interférométrique Les deux télescopes T1 et T2 sont identiques, et le diamètre de leurs ouvertures circulaires est négligeable devant la longueur T2T1= b de la ligne de base (de milieu T) qui joint les deux instruments. La position moyenne d'un système stellaire binaire, c'est-à-dire une étoile double symétrique avec deux contributions égales de l'éclairement I0, est repérée par l'angle que fait la direction T avec la normale en T à la ligne de base. On pose D = T. Les positions x1 et x2 = ­ x1 des 2 étoiles E1 et E2 qui constituent le système stellaire sont comptées par rapport à l'origine de l'axe x, ce dernier étant perpendiculaire à la direction T. L'ensemble des caractéristiques décrites ci-dessus est apparent sur la figure 1. En outre, un dispositif annexe, dont on discutera l'usage par la suite, permet de faire interférer les ondes optiques issues des deux foyers images en introduisant une différence de marche supplémentaire Lf sur le signal issu de T1. 2/15 I.1 Exprimer les différences de marche 1 = E1T2 ­ E1T1 et 2 = E2T2 ­ E2T1, hors contribution Lf. Pour faire le calcul approché de ces deux grandeurs, on remarquera que la distance D est extrêmement grande devant les autres dimensions exprimées sur la figure 1, et qu'il est alors possible pour E1, respectivement E2, de poser E1T2 E1H + HT2. Montrer que les phases spatiales correspondantes k (k = 1, 2) qui prennent en compte toutes les contributions des différences de marche peuvent se mettre sous la forme : k = 2 Xx k + b sin - L f , D avec la longueur d'onde supposée monochromatique émise par les étoiles E1 et E2, xk (k = 1, 2) leurs positions et X une longueur que l'on explicitera. I.2 La contribution à l'intensité Ik est due, pour une étoile Ek donnée, au système interférentiel qui résulte des phases spatiales k. Il est aisé de l'exprimer par la relation I k = I 0 (1 + cos k ). Donner l'intensité totale I en fonction de I0, 1 et 2. Mettre cette intensité totale sous la forme : I = 2 I 0 1 + cos b sin - L f X ( x2 - x1 ) cos 2 D . I.3 La distance entre les télescopes Antu et Kueyen est b = 57,000 m. Le système binaire est à la position moyenne = 45° et les deux étoiles E1 et E2 sont supposées émettre à la même longueur d'onde de 600 nm. Trouver la plus petite distance angulaire = ( x2 - x1 ) D détectable, exprimée en radians, pour obtenir un éclairement uniforme. I.4 Calculer le contraste donné par = I max - I min . I max + I min I.5 On s'arrange généralement, via l'utilisation d'une ligne à retard, pour que Lf, différence de marche supplémentaire mentionnée en introduction, soit égale à (­ bsin). Quelle en est la raison ? n1(N1) n2(N2) Gaine n(r) Coeur I.6 0 a r Coeur Gaine r 0 a Figure 2 : fibre optique à saut d'indice : profil d'indice à gauche, coupe à droite 3/15 Tournez la page S.V.P. Cette ligne à retard peut être réalisée à l'aide d'une fibre optique, et dans la suite de l'exercice, nous considérerons une fibre monomode à saut d'indice comme présentée figure 2, page 3. Les rayons lumineux subissent une succession de réflexions totales à l'interface entre le coeur et la gaine de la fibre. Dans toute fibre, chacun de ses constituants, c'est-à-dire coeur et gaine, doit se voir associer un coefficient de dispersion D pour deux raisons : du fait du mode guidé et de la distorsion associée à la dispersion relative au temps d'arrivée d'un signal, mais également du fait que les indices dépendent des longueurs d'onde . Une fibre est alors définie par ses indices de réfraction n1 et n2, respectivement pour le coeur et la gaine, mais également par ses indices de groupe N1 et N2 liés aux vitesses de groupe respectives d'un signal donné, dans les milieux n1 et n2. Les premiers dn dépendent des seconds par la relation Ni = ni - i (i = 1, 2), dont on n'a pas explicitement d l'usage dans la suite du problème. On admettra qu'avec la fibre employée ici, on se place dans le cas où ( N 1 - N 2 ) / N 2 (n1 - n2 ) / n2 et n1 + n2 2n2 . On peut montrer que le coefficient de dispersion du guide, c'est-à-dire la gaine, dans des ( N - N 2 ) 1 , avec conditions de faible guidage pour une fibre monomode vaut Dg = - 1,984 1 0c V 2 I.6.1 ( ) c la vitesse de la lumière dans le vide c = 3.10-4 m.ps -1 et V = 2 a 0 n12 - n22 , tel que V < 2,4 en régime monomode. Montrer que si l'on exprime a et 0 en µm, alors Dg peut s'écrire simplement selon N D g = -83,76 22 20 (exprimé en unités ps.km-1.nm -1 ). n2 a I.6.2 Le diamètre de la gaine étant par ailleurs grand devant celui du coeur qui vaut 2a, on peut montrer que le coefficient de dispersion du coeur Dm est alors donné par Dm = A ln 0 , avec B A et B deux constantes, la première ayant la dimension de Dm, la seconde celle d'une longueur caractéristique, et 0 est la longueur d'onde de la lumière incidente dans le vide. Quelle est l'expression de a qui permet de compenser le coefficient de dispersion du matériau Dm par celui de dispersion du guide Dg pour finalement annuler le coefficient de dispersion total D = Dm + Dg ? Faire l'application numérique avec 0 = 1,55 m, n2 = 1,442, N 2 = 1,457, A = 145 ps.km-1.nm-1 (dimension physique de D, voir introduction) et B = 1,35 µm. I.6.3 Avec ces valeurs numériques, calculer Dm et vérifier que la fibre est monomode. On donne n1 = 1,447. 4/15 PARTIE II. LE SATELLITE SPATIAL HUBBLE : QUELQUES ASPECTS OPTIQUES Le satellite Hubble est un instrument à deux réflecteurs, pour une masse de 11 tonnes et une longueur d'environ 13 m. II.1 Alimentation électrique : panneaux solaires et lentilles de Fresnel Un satellite doit être autonome d'un point de vue énergétique, et une solution consiste en l'usage de panneaux solaires avec des cellules photovoltaïques. Sur Hubble, ils sont au nombre de deux, pour une surface nominale totale de 36 m2, qui alimentent principalement les caméras et les quatre grands volants employés pour orienter et stabiliser le télescope. Les panneaux doivent collecter un maximum de lumière pour une masse minimale et un encombrement réduit. L'utilisation de lentilles de Fresnel peut prendre tout son sens, car à distance focale et diamètre identiques à ceux d'une lentille « standard », elles ont une épaisseur considérablement plus faible, et donc une masse dans la même proportion. II.1.1 Avant de procéder à l'étude d'une telle lentille, on va d'abord s'intéresser à un simple prisme d'indice n et d'angle au sommet A tel que représenté sur la figure 3. On note i et i' les angles d'incidence et d'émergence au niveau des faces d'entrée et de sortie du prisme comptés par rapport aux normales respectives, ainsi que r et r' ceux des rayons, l'un réfracté sur la face d'entrée et l'autre incident sur la face de sortie. Donner les lois de Descartes en réfraction pour chacune des deux faces, ainsi que la relation du prisme qui lie l'angle de déviation D à i, i' et A. A + + I 1 D i' i r r' I' A n 1 Figure 3 : prisme simple II.1.2 On modélise la lentille de Fresnel par un système optique de révolution comportant au centre une lentille plan-convexe (L) de diamètre 0 et de distance focale f, entourée de N anneaux prismatiques (N >> 1) selon un arrangement représenté sur la figure 4. Chaque prisme Pk (1 k N) est caractérisé par son angle au sommet Ak, le dit sommet étant situé à la distance k de l'axe de (L) telle que k = 0 / 2 + k, avec une constante. La face d'entrée de chacun de ces prismes est perpendiculaire à l'axe de la lentille (L), conformément à la figure 4. Le but est de déterminer l'angle au sommet de chaque prisme pour qu'un rayon incident issu d'une source ponctuelle placée au foyer objet Fo de la lentille plan-convexe (L), ressorte parallèlement à l'axe optique. Si l'on est capable de réaliser un tel dispositif, on aura alors obtenu une lentille mince convergente de foyer objet Fo, de distance focale objet fo et de diamètre = 0 + 2N. 5/15 Tournez la page S.V.P. PN Pk P1 Fo 0 O (L) fo Figure 4 : coupe d'une demi-lentille de Fresnel II.1.2.1 Préciser l'expression de la déviation Dk à la traversée du prisme Pk en fonction de l'angle d'incidence ik du rayon sur la face d'entrée. On supposera que est suffisamment faible pour que l'angle ik soit le même pour tous les rayons incidents sur un prisme donné. II.1.2.2 En utilisant les lois de Descartes établies en II.1.1 pour les deux faces d'un prisme Pk donné, montrer que l'angle au sommet Ak peut se mettre sous la forme sin ik tan Ak = et déterminer la valeur de . n 2 - sin 2 ik - 1 ( ) II.1.2.3 Exprimer sin ik en fonction de k et fo, la distance OI étant assimilée à k, avec I point d'entrée du rayon incident dans le prisme Pk. II.1.3 Calculer la constante , puis les angles i1, i10, A1 et A10 pour les paramètres suivants de la lentille de Fresnel : N = 10, n = 1,5, = 15 cm, fo = - 10 cm et 0 = 5 cm. II.1.4 On rappelle que la focale fi d'une lentille mince en fonction de n et des rayons de courbure comptés algébriquement R1 et R 2 des dioptres, respectivement indicés 1 pour 1 1 1 = (n - 1) - . l'entrée et 2 pour la sortie, est donnée par fi R1 R 2 Exprimer le rayon de courbure Rpc de la face sphérique de la lentille plan-convexe (L) en fonction de l'indice n et de sa distance focale image fi, puis en fonction de n et de fo. Le calculer. II.1.5 En s'appuyant sur la figure 5, exprimer l'épaisseur ecc au centre d'une lentille biconvexe symétrique en fonction du rayon de courbure Rcc pour laquelle le diamètre apparent vu depuis C l'un des centres de courbure est 2cc et de la hauteur cc. En déduire l'épaisseur epc de la lentille plan-convexe (L) en fonction de Rpc et 0, puis la calculer. 6/15 cc cc ecc C Rcc Figure 5 : lentille biconvexe symétrique II.1.6 Comparer epc avec l'épaisseur au centre d'une lentille biconvexe symétrique de même distance focale fo et de diamètre 15 cm. Conclure. II.2 Positionnement du satellite : mesure des vitesses angulaires à l'aide d'un interféromètre de type Sagnac Les gyrolasers Sagnac, c'est-à-dire des gyroscopes à laser exploitant l'effet Sagnac, sont utilisés pour mesurer avec précision la rotation d'un dispositif par rapport à un référentiel inertiel, référentiel fixe vis-à-vis d'étoiles lointaines. Lorsqu'ils sont associés à des accéléromètres pour déterminer la position, la vitesse et l'altitude d'un engin, l'ensemble constitue une centrale à inertie. L'interféromètre de Sagnac, de rayon RS = 20 cm, est schématisé sur la figure 6. La lumière laser provenant de la source SL et qui tombe perpendiculairement sur la lame semi-réfléchissante Lsr, effectue un parcours circulaire soit dans le sens (D) soit dans le sens (G) d'une fibre optique d'indice de coeur n selon qu'elle est transmise ou réfléchie au niveau de la lame Lsr. La sortie de l'interféromètre est matérialisée par la flèche à droite. Lsr SL (G) Rs (D) Figure 6 : interféromètre Sagnac 7/15 Tournez la page S.V.P. On fait tourner l'interféromètre de Sagnac autour d'un axe perpendiculaire à son plan, à une vitesse angulaire supposée uniforme. II.2.1 La rotation de l'interféromètre induit une différence de marche entre les chemins (D) et (G). Lequel de (D) ou (G) est le plus long ? Qu'observe-t-on à la sortie de l'instrument ? II.2.2 S'agissant de lumière, le calcul du temps de parcours pour les deux chemins devrait être effectué en cinématique relativiste. Nous nous contenterons cependant du résultat au premier ordre qui se trouve correspondre au calcul classique. Calculer les temps de parcours tD et tG, respectivement des chemins (D) ou (G), puis les différences de marche et de phase induit par la rotation, en fonction de Rs, de , de la vitesse de la lumière c, de n et de sa longueur d'onde . 8/15 ÉLECTROMAGNÉTISME Ce problème d'électromagnétisme propose, en partie III, la conception d'un teslamètre en utilisant un montage comprenant des amplificateurs opérationnels, suivie d'une partie IV, où le phénomène de lévitation est étudié dans les domaines « électrostatique » et « magnétique ». Les sous-parties IV.1 et IV.2 sont indépendantes. Représentation des grandeurs scalaires : a, AB et vectorielles : a, AB Notation du produit scalaire ( F G ) et vectoriel ( F × G ) des deux vecteurs F et G. Données Dans un système de coordonnées sphériques (r, , ), on définit la base orthonormée directe (er, e , e ). f 1 f 1 f er + e + e Gradient d'une fonction scalaire : grad f (r , , ) = r r r sin z er -7 -1 M Perméabilité du vide : µ0 = 4 ×10 H.m · e r 1 Permittivité du vide : 0 = F.m -1 e 36× 109 = 4 O Valeur de l'intégrale : sin 3 d = y =0 3 x PARTIE III. APPAREIL DE MESURE DU CHAMP MAGNÉTIQUE B : LE TESLAMÈTRE III.1 L'amplificateur opérationnel « idéal » On schématise un amplificateur opérationnel (AO) par la figure suivante : i- e- e+ i+ - +Vcc + -Vcc is s Figure 7 où +Vcc et -Vcc sont les tensions d'alimentation de l'ordre de ± 15 V, qui n'apparaîtront plus dans les schémas suivants. On pose e+ et e- les tensions d'entrée, la tension différentielle d'entrée, s la tension de sortie, i+ et i- les courants d'entrée et is le courant de sortie. 9/15 Tournez la page S.V.P. III.1.1 Définir les deux types de régime de l'AO idéal et représenter sa caractéristique de transfert s( ). III.1.2 Dans le cas d'un AO idéal en fonctionnement linéaire, quelles sont les valeurs de i+, i-, et du gain différentiel = s / ? Dans le symbole général d'un opérateur représenté par un rectangle (symbole normalisé) que représentent le triangle et le signe à l'intérieur ? III.2 Montages de base avec AO Les AO utilisés dans ces montages de base sont idéaux et fonctionnent en régime linéaire. III.2.1 Établir, pour chacun des quatre montages ci-dessous, les expressions de K1, K2, K3 et K4. Les tensions de sortie s1, s2, s3 et s4 s'expriment en fonction des grandeurs d'entrée et éventuellement des valeurs des différentes résistances. +Vcc - - R1 + + s1 e1 s2 R2 - Vcc Montage 1 : s1 = K1.e1 Montage 2 : s2 = K2 .Vcc R4 R3 - R3 e2 e1 + - e4 + R6 s3 R4 s4 R5 Montage 4 : s4 = K4 e4 Montage 3 : s3 = K3(e1-e2) III.2.2 On nomme les montages 1 et 2 respectivement « suiveur » et « décaleur ou générateur de tension réglable ». Proposer un nom pour chacun des montages 3 et 4. III.3 Conception d'un teslamètre La mesure d'un champ magnétique B nécessite, comme capteur, une sonde à effet Hall qui fournit une tension faible, accessible à la mesure après amplification. Le constructeur de la sonde indique une relation entre la f.e.m. de sortie Uc du capteur en fonction de la valeur du champ magnétique existant B de la forme : U c = 0, 25Vcc + 20 B avec Uc et Vcc en volts et B en teslas. 10/15 Cette tension étant faible, une chaîne électronique à la sortie du capteur va amplifier et rendre une tension de sortie en bout de chaîne, proportionnelle à B de la forme : U s = K.B . Synoptique de la chaîne électronique à la sortie de la sonde Montage 2 Montage 3 capteur Montage 4 Montage 1 U2 Uc U3 Us U1 III.3.1 Quelle est l'utilité du montage 1 (suiveur) ? III.3.2 Quel est le rôle du montage 2 (décaleur) ? III.3.3 On suppose que la chaîne ne modifie pas le comportement individuel de chacun des quatre montages étudiés en III.2.1. III.3.3.1 Déterminer l'expression de la tension de sortie Us en fonction des résistances R1, R2, R3, R4, R5, R6, de Vcc et de B. III.3.3.2 Application numérique Vérifier que Us est bien de la forme Us = K.B et en déduire la valeur de K pour les résistances : R1 = 3 k ; R2 = 5 k ; R3 = R4 = R5 = 1k ; R6 = 4 k . PARTIE IV. PHÉNOMÈNES DE LÉVITATION « ÉLECTROSTATIQUE » ET « MAGNÉTIQUE » DE TYPES IV.1 Lévitation « électrostatique » IV.1.1 Force électrostatique à la surface d'un conducteur Cette question a pour but de montrer qu'en surface d'un conducteur, il existe une force électrostatique normale à sa surface, dirigée vers l'extérieur, proportionnelle à l'élément de surface sur lequel elle s'applique et au carré de la densité superficielle de charges (voir figure 8). Les points M1 et M2, respectivement à l'intérieur et à l'extérieur du conducteur, sur la normale n sont symétriques l'un de l'autre par rapport au point M0 (M0 dS) et l'on suppose M 0 M1 = M 0 M 2 très inférieur au diamètre de dS. Le champ électrique total E = Ei + Ee est dû à la contribution du champ Ei de la charge dq portée par l'élément de surface dS du conducteur C et du champ Ee en provenance de toutes les autres charges de l'espace (charges restantes de C et charges des conducteurs C' et C''). 11/15 Tournez la page S.V.P. C7 ' dS : élément de surface 0 : densité superficielle de charges Figure 8 IV.1.1.1 Donner les relations entre Ei(M1) et EÏ(M2) puis entre Ee(Mo), Ee(Ml) et Ee(Mz) àla traversée de l'élément de surface dS . IV.1.1.2 Le conducteur C étant en équilibre, donner l'expression de E(Ml) et en déduire la relation (1) entre Ei(Ml) et Ee(M1). Exprimer E(M2) à partir du théorème de Coulomb et en déduire la relation (2) entre Ei(M2) IV.1.1.3 Déduire des relations (l) et (2), la valeur de Ee(Mo) puis celle de E(Mo). IV.1.1.4 Montrer que la force df exercée par le champ E(Mo) sur la charge dq de la surface dS est de la forme k.az.dS.n, où l'on déterminera la constante k. Remarque : dans le cas où la constante k n'est pas trouvée, on utilisera dans les questions . . 2 su1vantes l'express1on (if = k.0 .dS.n. IV.1.2 Force agissant sur une calotte sphérique On considère une sphère conductrice de centre O, de rayon R, isolée dans l'espace (voir figure 9a). Figure 9a Figure 9b IV.1.2.1 Portée au potentiel V, la sphère prend une charge Q positive. Déterminer en fonction de V, de 80 et de R, la densité superficielle de charges 0 de cette sphère. IV.1.2.2 Soit df la force subie par un élément de surface dS de la calotte sphérique (voir figure 9b) dont l'expression est trouvée dans la question IV.1.1.4. Expliquer pourquoi la résultante des forces agissant sur la calotte sera portée par l'axe ( ). IV.1.2.3 Nous appellerons df1 la projection de df sur l'axe ( ) et d la projection de dS sur le plan (P). Donner les relations entre df1 et df d'une part et d et dS d'autre part. IV.1.2.4 À partir de la composante df1 de la force df, montrer que le module de la résultante des forces f qui s'exercent sur la calotte sphérique vue sous un angle 2 de O s'exprime en fonction du potentiel V, de 0 et de sin . IV.1.3 Phénomène de « lévitation électrostatique » Sur le sommet de la sphère conductrice, de centre O et de rayon R, on place un petit disque conducteur de masse m, de rayon a, très petit devant R, de sorte que l'on puisse considérer que le disque est en contact sur toute sa surface avec la sphère (voir figure 9a). À partir des expressions de la force (question IV.1.1.4.) et de la densité superficielle de charges (question IV.1.2.1.), déterminer le potentiel minimum Vmin auquel la sphère doit être portée pour que le disque se soulève. IV.2 Lévitation « magnétique » IV.2.1 Sphère chargée au repos On considère une sphère de centre C, de rayon R uniformément chargée de densité surfacique de charges . IV.2.1.1 Exprimer la charge Q de la sphère en fonction de et de R. IV.2.1.2 Par utilisation des règles de symétrie et les invariances du système, expliquer la forme du champ électrostatique E (M). On considérera le point M(r, , ) dans un système de coordonnées sphériques. IV.2.1.3 Appliquer le théorème de Gauss pour définir le champ électrostatique dans les cas : Eint (r < R ) et Eext (r > R ) que l'on explicitera en fonction de Q, r et er puis représenter E(r). IV.2.1.4 En déduire le potentiel électrostatique dans les cas Vint (r < R) et Vext (r > R) sachant que V ( ) = 0 . Représenter V(r). IV.2.2 Sphère chargée en mouvement de rotation Rappel : une spire circulaire de rayon a, parcourue par un courant d'intensité I, crée en un point M de l'axe Oz de cette spire, un champ magnétique B(M) de la forme : µI B (M) = 0 sin 3 e z où ez est un vecteur unitaire de l'axe Oz et le demi-angle au sommet 2a du cône de sommet M d'axe Oz s'appuyant sur la spire. 13/15 Tournez la page S.V.P. La sphère, de densité surfacique de charges , tourne autour d'un diamètre, porté par z'z, à la vitesse angulaire constante . Le point P se projette en H sur l'axe de rotation (voir figure 10). Considérant une spire élémentaire (comprise entre et +d ) d'axe Cz, parcourue par un courant dI, celle-ci crée en C un champ magnétique dB(C) et possède un moment magnétique d . z + P H d R C z' Figure 10 IV.2.2.1 Justifier que dI = j0 R sin d où j0 est une expression de , R et définira. que l'on IV.2.2.2 Exprimer le champ magnétique élémentaire dB(C) et en déduire le champ B(C) créé par cette distribution de courant due à toutes ces spires élémentaires coaxiales. On exprimera dB(C) et B(C) en fonction de j0. On admettra que le champ est uniforme à l'intérieur de la sphère et vaut B(C). IV.2.2.3 Exprimer le moment magnétique élémentaire d et en déduire le moment magnétique provenant de la contribution de toutes les spires élémentaires coaxiales. On exprimera d et en fonction de j0. IV.2.3 Phénomène de « lévitation magnétique » Le matériau constituant la sphère, refroidi à une température inférieure à une certaine température dite « critique », devient supraconducteur. Cela se traduit par une conductivité infinie (donc une résistivité nulle) du matériau et quand celui-ci est soumis à un champ magnétique extérieur, des courants électriques induits surfaciques apparaissent pour assurer un champ magnétique nul dans tout le volume du supraconducteur (Effet Meissner). IV.2.3.1 La sphère supraconductrice est soumise à l'action d'un champ magnétique uniforme B0 = B0 ez . Il apparaît donc des « courants supraconducteurs » surfaciques de telle sorte que le champ magnétique total Bt à l'intérieur de la sphère soit nul. On suppose que 14/15 les courants induits sont de la même forme que ceux décrits en question IV.2.2.1 ; c'est-àdire : dI = j0 R sin d pour une spire élémentaire d'axe Cz. De la condition sur Bt dans la sphère supraconductrice soumise au champ magnétique B0, exprimer j0 en fonction de B0 et en déduire l'expression du moment magnétique en fonction du champ magnétique B0. IV.2.3.2 Montrer qu'en appliquant le champ magnétique uniforme B0, la force résultante exercée sur les courants surfaciques est nulle. IV.2.3.3 Dans le cas où le champ magnétique appliqué augmente de dB0, on admet que la variation de l'énergie potentielle d'interaction du dipôle, de moment magnétique , s'écrit dEP = - d . B0. En déduire l'expression de EP en fonction de B0. IV.2.3.4 Le champ B0 n'est plus uniforme mais varie faiblement sur une distance de l'ordre du rayon R de la sphère. D'un point de vue énergétique, pourquoi cette sphère est-elle repoussée (lévitation magnétique) vers les régions de plus faible champ ? Fin de l'énoncé 15/15

Extrait du corrigé obtenu par reconnaissance optique des caractères


 CCP Physique 2 MP 2012 -- Corrigé Ce corrigé est proposé par Jimmy Roussel (Professeur en CPGE) ; il a été relu par Pierre Lacas (Professeur agrégé) et Stéphane Ravier (Professeur en CPGE). Comme souvent, la deuxième épreuve de physique du concours CCP filière MP se compose de deux grandes parties : optique et électromagnétisme. Au total, l'épreuve comporte quatre parties indépendantes. · La première partie porte sur un montage interférométrique à deux télescopes associés par fibre optique au VLT, Very Large Telescope, situé au Chili. Utilisé en astronomie, ce montage permet d'augmenter considérablement le pouvoir de résolution. Ce problème d'optique ondulatoire fait intervenir les notions d'interférence à deux ondes qui sont, pour la plupart, rappelées dans l'énoncé. On peut déplorer que cette partie de l'énoncé soit plutôt floue, ce qui n'aide pas à comprendre comment le dispositif fonctionne si on ne l'a jamais rencontré avant. De plus, cette partie se termine par l'utilisation de la fibre optique monomode, notion hors-programme. Si aucune connaissance sur ces fibres n'était exigée, cela n'aide pas à la clarté de ce premier ensemble de questions. · La deuxième partie aborde quelques aspects optiques liés au satellite Hubble : la lentille de Fresnel utilisée dans ses panneaux solaires est étudiée et l'effet Sagnac à l'origine des gyrolasers est introduit dans un cadre classique. Il s'agit ici essentiellement de tester les acquis de première année en optique géométrique. · Le troisième problème est consacré au schéma électronique d'un teslamètre utilisant les amplificateurs opérationnels. Contrairement au reste de l'épreuve, cette partie exige de l'autonomie et une maîtrise plus technique des lois de l'électrocinétique. · Enfin, la dernière partie aborde les phénomènes de lévitation de nature électromagnétique. Dans un premier temps, on met en évidence l'existence d'une « pression électrostatique » dans les conducteurs à l'équilibre. Ensuite, on s'intéresse au phénomène de lévitation d'un supraconducteur sphérique dans un champ inhomogène. Cette partie très progressive visite les chapitres sur les conducteurs, le théorème de Gauss et le dipôle magnétique. Il peut à ce titre servir de révision du programme d'électromagnétisme de première année. Dans l'ensemble, l'épreuve ne présente pas de grande difficulté de par sa grande progressivité, ses nombreuses indications et la présence importante de résultats intermédiaires. Indications Partie I I.2 Les deux étoiles sont des sources incohérentes. I.5 Une erreur de signe s'est glissée dans l'énoncé : il faut lire Lf = b sin . I.6.3 La fibre optique fonctionne en régime monomode lorsque V < 2,4. Partie II II.1.2.3 Raisonner dans le triangle Fo OI. II.1.4 Prendre garde aux signes. Le rayon de courbure algébrique R2 d'une lentille plan-convexe est négatif puisque le centre de courbure est à gauche du sommet du deuxième dioptre sphérique. Partie IV IV.1.1.3 Attention, contrairement à ce qu'indique le texte, on ne peut pas exprimer le champ électrique total en M0 . IV.1.1.4 Là encore, une erreur s'est glissée dans l'énoncé. La force électrique que subit l'élément de surface est le résultat de l'interaction entre les charges de l'élé- ment dS et les autres charges. C'est donc bien le champ électrique Ee (M0 ) - qui est utile au calcul, et non E (M0 ) qui n'est pas défini. IV.1.2.1 Calculer par exemple le potentiel au centre de la boule conductrice. IV.2.1.3 Utiliser le théorème de Gauss en prenant pour surface d'intégration une sphère de centre C et de rayon r. IV.2.1.4 On rappelle que le potentiel est une quantité continue. IV.2.3.2 Calculer la force de Laplace sur une portion de spire élémentaire et vérifier que pour deux points symétriques par rapport à l'axe (), ces deux forces se compensent. Optique I. Télescopes au sol et en association I.1 Les étoiles sont suffisamment éloignées pour considérer que les rayons lumineux qu'elles émettent sont parallèles, de sorte que l'on peut opérer l'approximation E1 T2 E1 H + HT2 . La différence de chemins optiques s'écrit donc 1 = E1 T2 - E1 T1 E1 H - E1 T1 + HT2 · E2 (x2 ) E1 (x1 ) · x bs in H b/2 cos J T b T2 T1 Pour calculer E1 H et E1 T1 , on va utiliser le théorème de Pythagore. Dans les deux cas on aura besoin de la longueur E1 J, qui vaut D - (b sin )/2. Comme b se calcule en kilomètres et D en années-lumière, on est tenté par l'approximation E1 J = D. Cependant, il s'agit d'une partie d'optique, donc l'information précieuse peut justement être dans la différence (b sin )/2 : on ne peut pas forcément la négliger. Dans ce cas particulier, on voit que la trigonométrie fournira une réponse exacte mais trop malcommode pour les calculs ; on procédera donc à un DL tôt ou tard. Puisque toutes les longueurs sont négligeables devant D, on finira par mettre en facteur 1/D. Or c'est justement avec E1 J que la longueur D est introduite dans les expressions, de sorte que [1 - (b sin )]/D ne pourrait donner qu'un terme négligeable au 2e ordre. Ici, on peut donc faire l'approximation E1 J = D. Le théorème de Pythagore dans le triangle E1 JH s'écrit s 2 q b/2 cos + x1 2 2 E1 H = (b/2 cos + x1 ) + D = D 1 + D et, dans le triangle E1 JT1 , s 2 q b/2 cos - x1 E1 T1 = (b/2 cos - x1 )2 + D2 = D 1 + D 2 2 En faisant un développement limité à l'ordre 1 en = (b/2 cos + - x1 ) /D , on obtient les expressions : " " 2 # 2 # 1 b/2 cos - x1 1 b/2 cos + x1 et E1 T1 D 1 + E1 H D 1 + 2 D 2 D Sachant que HT2 = b sin , la différence de marche 1 vaut " 2 2 # D b/2 cos + x1 b/2 cos - x1 b cos x1 1 - + b sin = + b sin 2 D D D Pour le calcul de la différence de marche 2 = E2 T2 - E2 T1 , il suffit de remplacer x1 par -x1 . Finalement, on obtient 1 b cos x1 + b sin D et 2 - b cos x1 + b sin D