CONCOURS COMMUN INP

RAPPORT DE L’EPREUVE ECRITE D’INFORMATIQUE

1/ PRESENTATION DU SUJET

Ce sujet cherche a évaluer I'ensemble des compétences visées par les programmes d’option
informatique MP et d’informatique de tronc commun MP, en restant le plus proche possible des objectifs
des programmes. Le sujet se veut strictement conforme aux programmes sus-mentionnés et comporte
de nombreux rappels et précisions de vocabulaire, en particulier en ce qui concerne les « éléments
techniques devant étre reconnus et utilisables aprés rappel ».

Le sujet cherche a évaluer aussi bien les aspects théoriques et pratiques, avec :

* des questions appelant une réponse précise et rigoureuse ;

* des questions demandant de décrire informellement une idée ;

 des questions proches du cours ;

* des preuves formelles sur des objets informatiques :

* des questions de programmation dans les trois langages OCaml (aspects fonctionnels et impératifs),
Python et SQL ;

* des questions d’analyse de programmes, que ceux-ci soient proposés par le sujet ou par les
candidats.

Ce sujet s’articule autour d’'un unique probléme, motivé par une situation fictive mais concréte : celle du
partage du réseau d’un pays imaginaire entre deux opérateurs. Le réseau est modeélisé par une base de
données en SQL (partie 1), par un graphe en OCaml (parties Il, Il et IV) et par un graphe en Python
(partie V). La procédure de partage est vue comme un jeu a deux joueurs (partie V) qui fait intervenir la
notion de bande passante maximale (partie V) liée au probléme de la recherche d’'un arbre couvrant de
poids maximal (partie II) que I'on peut trouver a I'aide de I'algorithme de Boruvka (partie Ill).

La premiere partie (informatique de tronc commun, langage SQL) porte sur I'étude d’'une base de
données : sa modélisation, I'élaboration de requétes et la compréhension d’une requéte proposée par le
sujet.

La deuxieme partie (option informatique) étudie des propriétés élémentaires sur les graphes et les
arbres couvrants pondérés, qui seront utiles dans tout le probléme. Les questions sont plutét théoriques
et nécessitent un soin et une rédaction rigoureuse, avec des preuves plus ou moins délicates. Les
concepts sont réintroduits de maniéere progressive. Cette partie est proche du cours mais nécessite déja
de faire preuve d’un certain recul. Lensemble des propriétés peuvent étre admises de maniére a ne pas
bloquer un candidat.

La troisiéme partie (option informatique, langage OCaml) propose de comprendre et de réaliser une

1/4

Téléchargé gratuitement sur Doc-Solus.fr



implémentation de I'algorithme de Boruvka en demandant de programmer de maniére progressive de
nombreuses fonctions en OCaml, en utilisant a la fois ses aspects fonctionnels et impératifs. Des
questions de compréhension de programmes donnés, d’analyse de terminaison, de correction et de
complexité sont proposées.

La quatrieme partie (option informatique) se propose de montrer que la bande passante limite d’'un
réseau correspond au poids de I'aréte de poids minimal de I'arbre couvrant de poids maximal du graphe.
Les questions sont plus délicates mais peuvent étre admises.

La cinquiéeme partie (informatique de tronc commun, langage Python) propose de modéliser la
procédure de répartition du réseau comme un jeu a deux joueurs. Les premiéres questions portent sur
la théorie des jeux et la compréhension de la modélisation. Des questions élémentaires de
programmation en Python demandent d'implémenter des primitives permettant ensuite de calculer les
attracteurs, par une fonction score donnée qu’il est demandé de comprendre. Trois extensions
indépendantes sont enfin proposées : mémoiser la fonction score en utilisant un dictionnaire ; modifier la
fonction score pour implémenter I'algorithme min-max et pour finir une question théorique sur un vol de
stratégie.

Les différentes parties ne sont pas complétement indépendantes mais le graphe de dépendance est
clairement indiqué au début du sujet et il est explicitement indiqué qu’il est possible d’admettre des
résultats intermédiaires pour pouvoir progresser dans le sujet. Le sujet est gradué en difficulté,
globalement et au sein de chaque partie et le nombre de questions proches du cours est suffisamment
important pour qu’un candidat moyen MP puisse traiter le sujet de maniére conséquente.

2/ REMARQUES GENERALES

Le sujet a été bien compris dans sa globalité par la majorité des candidats. Il a permis de bien classer
les candidates et candidats avec une moyenne de 10,12 et un écart type de 3,99. Sa longueur et le
niveau de difficulté semblent adaptés aux connaissances et compétences des étudiants et étudiantes
qui ont suivi I'option informatique. Quelques copies ont abordé toutes les questions du sujet. On peut
mentionner la qualité de certaines copies et, au contraire, un petit nombre de copies trés lacunaires.

Aucune question n'a été systématiquement évitée, méme si la derniére question — que I'on peut voir
comme une question bonus — n’a été correctement traitée que par de trés rares candidats. Soulignons
quelques copies qui ne traitent absolument aucune question en OCaml, ce qui est trés pénalisant.

L’analyse statistique des résultats montre que les premiéres questions (notamment en Partie | et Il) ont
été bien traitées, traduisant une bonne préparation des candidats sur les fondamentaux. Les parties Il a
V ont révélé des écarts plus marqués, mettant en lumiére des faiblesses en analyse complexe, gestion
du temps et formalisation. Certaines questions techniques, parfois laissées de coté par une majorité des
candidats, ont cependant permis a quelques-uns de se distinguer par la qualité de leur raisonnement et
la rigueur de leur rédaction.

Les correcteurs rappellent qu'une présentation du code, respectant les bonnes pratiques de
programmation (indentation, retours a la ligne, noms de variables significatifs) est absolument
impérative. De trop nombreux candidats écrivent trop souvent en mauvais frangais : orthographe et
ponctuation défaillantes. lls confondent longueur et qualité d’une preuve. On rappelle qu’une preuve est
d’abord un texte en francais. A ce titre, elle doit respecter les régles de grammaire et de ponctuation du
frangais, qui sont la condition nécessaire de leur intelligibilité. De trop nombreuses copies présentent
des lacunes graves dans ce domaine : mauvais accords entre adjectifs et noms, entre verbe et sujet (les
défauts d’accord en nombre rendent les textes ambigus) ; ponctuation parfois totalement absente (une

2/8

Téléchargé gratuitement sur Doc-Solus.fr



phrase doit toujours commencer par une majuscule et étre terminée par un point ; les virgules
participent également au sens d’'une phrase). Savoir exprimer ses idées de fagon correcte et intelligible
est une compétence essentielle pour un ingénieur. Les candidats qui ont des difficultés langagiéres
doivent s’entrainer pendant leur préparation pour les éliminer. Rappelons qu’une partie du baréme prend
en compte la présentation, le soin et I'orthographe de la copie.

Le découpage de certains raisonnements en sous-questions a parfois été mal exploité par certains
candidats, qui tentent par exemple de traiter en Q8 un probléme qui fait 'objet de toute la partie Ill. De
trop nombreux candidats n’analysent pas assez la structure du sujet. Les copies montrent trop souvent
un manque de rigueur, avec des idées évoquées sans étre démontrées. Enfin, peu de candidats utilisent
les invariants et connaissent le terme de variant et encore moins les attracteurs.

En ce qui concerne le langage OCaml, les niveaux sont trés variables. La présentation laisse souvent a
désirer. On observe toujours des difficultés avec la gestion et la compréhension des booléens. De fagon
surprenante, certaines copies faibles font un usage fréquent du mot-clé when, souvent de fagon
maladroite ou incorrecte. Rappelons que ce mot-clé n’est pas au programme de CPGE et que toutes les
fonctions demandées peuvent étre écrites sans.

3/ REMARQUES SPECIFIQUES

PARTIE | - BASE DE DONNEES DU RESEAU

Cette partie est centrée sur les bases de données et le langage SQL. Elle a été globalement bien
abordée, bien que certaines questions aient posé des difficultés notables. Les questions de type requéte
SQL ont été correctement traitées, mais la compréhension des jointures et des agrégats reste fragile
chez une fraction significative des candidates et candidats.

Q1. Les notions de clés sont généralement mal connues, avec des confusions entre clés primaires et
étrangéres. La notion de clé étrangére n’étant d’ailleurs généralement pas comprise, voire
inconnue. Les candidats ont majoritairement identifié correctement les clés primaires, mais les
justifications sont souvent omises ou incorrectes. Certaines copies exploitent ici I'’hypothése
d’'unicité des bandes passantes, qui est faite seulement plus loin dans I'énoncé et n’était donc pas
applicable a cette question. Attention, si (id1, id2) est une clé primaire pour la table liaisons, ni id1
ni id2 ne 'est.

Q2. Les requétes (a) et (b) sont généralement bien traitées, mais les fonctions d’agrégation ne sont
pas toujours connues. Notons quelques confusions WHEN/WHERE. La requéte (c) a donné lieu a
des solutions en deux colonnes (avec une jointure) ou en deux lignes (avec une union) : les deux
ont été acceptées, lorsqu’elles étaient convenables. Pour la requéte avec deux colonnes, on
pouvait par exemple utiliser ORDER BY bp DESC LIMIT 1 ou bien WHERE bp = (SELECT
MAX(bp) FROM liaisons).

Q3. Cette question, plus difficile, a posé de réelles difficultés. On ne demandait pas ici de décrire le
résultat en frangais mais bien d’exécuter la requéte sur 'exemple. Beaucoup de candidats ont mal
interprété la requéte : confusion entre COUNT(*) et GROUP BY, mauvaise compréhension de ce
que réalisait UNION, résultat avec une liste des villes ou un ordre incorrect et beaucoup de copies
sans réponses.

3/8

Téléchargé gratuitement sur Doc-Solus.fr



PARTIE Il - ARBRE COUVRANT DE POIDS MAXIMAL

Cette partie théorique a été plutdét bien abordée, avec des taux de zéros trés faibles sur toutes les
questions. Les réponses sont en majorité présentes, ce qui montre que les notions de graphes
(connexité, acyclicité, arbres couvrants) sont bien assimilées. Cependant, les questions de type
"montrer que" ont été mal abordées, avec un taux élevé de non-réponses, surtout sur les questions plus
abstraites. Les erreurs les plus fréquentes concernent un manque de rigueur dans ['utilisation des
hypothéses (injectivité, connexité) ou dans la distinction entre graphe et sous-graphe.

Q4.

Q5.

Q6.

Q7.

Q8.

Q9.

La majorité des candidats a bien compris que supprimer une aréte d’un cycle ne déconnecte pas
le graphe et utilise le fait que le cycle fournit un chemin alternatif. Cette question semble
cependant avoir été difficile a rédiger pour les candidats. L’idée est en général bien comprise, mais
la rédaction est souvent confuse. Trop souvent, on a confondu longueur et qualité d’'une preuve. |
n’était pas nécessaire ici d’expliciter les sommets du cycle ni des chemins : il est clair qu’on peut
concaténer des chemins. En revanche, il fallait prendre garde a deux écueils : on doit vérifier la
connexité pour n'importe quelle paire de sommets, pas seulement pour x et y ; et lorsqu’on a un
chemin de s a t dans G, on doit, pour obtenir un chemin dans G - a, remplacer foutes les
occurrences de I'aréte a par le cycle, sauf a avoir explicitement considéré un chemin simple de s a
t. Enfin, il faut dans ce genre de question bien prendre soin de préciser si les chemins sont dans G
oudans G - a.

On peut répondre a cette question en deux phrases, a condition d’appliquer convenablement la
question 4 puis la proposition 1. De trop nombreuses copies montrent ici une précipitation qui
conduit soit a des développements longs mais peu convaincants, soit a une fausse application de
la proposition 1 trop souvent confondue avec sa réciproque.

Réponses correctes mais souvent incomplétes. On n’attendait pas ici de détails concernant le
sens réciproque. En revanche, le sens direct est rarement démontré. Beaucoup de candidats se
contentent d’un « on peut enlever les cycles » sans justifier 'existence d’'un sous-graphe minimal
connexe, ou enlévent des arétes au graphe sans préciser pourquoi le processus s'arréte, ou
encore en enlévent une seule.

Beaucoup de copies répondent convenablement a cette question, mais parfois de facon
inutilement compliquée, faute d’exploiter la proposition 1 et/ou les questions précédentes. La sous-
question (a) est généralement trés bien réussie. En revanche pour la sous-question (b) beaucoup
de candidats oublient de justifier que T + a - a' est connexe (via Q4) et/ou qu’il comporte |S] - 1
arétes.

Cette question a été diversement traitée avec beaucoup de réponses vagues. L'argument de
finitude de I'ensemble des arbres couvrants est souvent absent. Il ne suffit pas de dire « il existe
un arbre de poids maximal » sans justification : il faut bien préciser que I'ensemble est fini et non
vide. L'argument qu’une partie non vide et finie de R (et non dans N ici) admet un maximum est
pourtant classique en informatique. Certaines copies prétendent donner un algorithme pour
construire un arbre couvrant de poids maximal : une lecture sommaire de I'ensemble de I'énoncé
doit conduire a comprendre que c’est hors de propos ici.

Question relativement bien traitée, notamment par les copies qui avaient déja su exploiter les
arguments de cardinal en question 7. L'argument de poids strictement supérieur p(a2) > p(a1) est
bien exploité.

4/8

Téléchargé gratuitement sur Doc-Solus.fr



PARTIE Il - RECHERCHE D’UN ARBRE COUVRANT DE POIDS MAXIMAL

Cette partie, en OCaml, est la plus longue et la plus technique. Les résultats sont hétérogénes, avec des
pics de réussite sur les questions simples et des difficultés croissantes sur les algorithmes complexes.
Cette partie s’est révélée sélective, en permettant de valoriser les candidats capables de structurer un
raisonnement complexe. Elle a aussi révélé des lacunes en analyse de cas et en compréhension de la
complexité algorithmique. Une meilleure gestion du temps est aussi a envisager. La majorité des
candidats maitrisent les bases d’OCaml, mais peinent sur les algorithmes complexes. Notons également
des copies qui ne traitent absolument aucune question en OCaml.

Q10.

Q1.

Q12.

Q13.

Q14.

Q15.

Q16.

Q17.

Une premiére question de programmation généralement réussie. La logique est pratiquement
toujours correcte, méme si on observe souvent des erreurs de syntaxe ou une mauvaise
compréhension du langage. Si les correcteurs se montrent volontiers tolérants sur les petites
erreurs de syntaxe, ils ne peuvent admettre qu’on confonde les listes et les tableaux, ni que I'on
prétende calculer un maximum global en comparant un terme avec celui qui le précéde.
Concernant la complexité, il ne suffisait pas d’observer qu’il y a une boucle, il faut aussi indiquer
que le corps de cette boucle est de colt constant.

Question trés bien traitée. La représentation du graphe est comprise. Quelques erreurs mineures
de syntaxe.

Les correcteurs ont été tolérants sur 'emploi du signe = ou := au lieu de la fleche <-. En revanche,
ajouter la nouvelle aréte a droite, avec quelque syntaxe que ce soit, ne respecte pas la complexité
demandée. Par ailleurs, il fallait préserver la symétrie de la représentation.

Question plus difficile et moins bien traitée. Il était possible de procéder par concaténations avec
@, a condition de le faire dans un ordre qui respecte la complexité demandée. Cette approche est
cependant source de complications techniques qui n‘ont pas toujours été bien gérées. Le plus
simple était sans doute d'utiliser, au sein d’'une boucle, la fonction List.iter, rappelée dans
I'énoncé, pour modifier une référence sur liste. Quelques candidats n’ont pas compris la question
et ont concaténé les listes g.(i). Le calcul de complexité est rarement précis. Enfin, dans de
nombreuses copies, la condition if i < j était absente, ce qui a conduit a des réponses incomplétes
Ou erronées.

Cette question trés classique n’a pas été aussi bien traitée qu’on aurait pu le souhaiter. La
récursion est souvent mal maitrisée. La faculté de filtrer les listes de taille 1 ne semble pas
présente a l'esprit de certains candidats. Notons que les fonctions fst et snd (par ailleurs hors
programme de CPGE) n’étaient pas utilisables ici, en plus d’étre inutiles. Les fonctions max et min
pourtant rappelées dans [I'énoncé sont utilisées de maniére non curryfiée (et donc
incorrectement) : par exemple min(a, b). La complexité linéaire est rarement justifiée. Notons enfin
que « n'est pas un symbole valide en OCaml.

Les explications ne sont pas souvent suffisamment précises. De nombreux candidats disent « ¢a
explore les voisins » sans mentionner la propagation de I'indice de composante ou la condition de
visite. Pour beaucoup de candidats, seuls les sommets adjacents sont mis a jour par cette
fonction.

On note beaucoup d’erreurs dans la structure des programmes. De nombreuses copies négligent
de produire une numérotation consécutive des composantes connexes, exigence qui se déduit de
la deuxieme phrase de l'introduction de la partie 1ll.3.

Question généralement bien traitée. On observe toujours des fonctions qui terminent par true et
s’évaluent donc systématiquement a true qui montrent des problémes de compréhension du

5/8

Téléchargé gratuitement sur Doc-Solus.fr



Q18.

Q19.

Q20.

Q21.

Q22.

Q23.

Q24.

Q25.

fonctionnement du langage. Quelques rares confusions entre la longueur du tableau des
composantes connexes et le nombre de composantes connexes. Beaucoup de solutions en une
ligne qui utilisent judicieusement max_tab et composantes_connexes.

Question tres bien traitée. L'aréte sare pour {3} est bien identifiée, mais celle pour {7,8}, de poids
18 est parfois confondue avec celle de poids 19.

Question peu traitée et rarement correctement. Certaines réponses se bornent a reformuler la
question, ce qui n‘apporte pas de point. Plusieurs candidats optent pour une démonstration par
récurrence, mais la partie hérédité n’est pas souvent correctement traitée, affaiblissant ainsi la
rigueur de la preuve.

On demandait de bien faire apparaitre les différentes étapes et peu de copies décrivent clairement
les trois étapes. Certaines copies perdent des points ici en ne permettant pas au correcteur de
vérifier rapidement que l'algorithme a été bien exécuté. On observe également beaucoup d’erreurs
dans le déroulé de lalgorithme, avec oubli de certaines arétes slres, ou une mauvaise
identification des composantes apres fusion.

Cette question simple a été diversement réussie : certaines copies déduisant la terminaison du fait
que l'objet qu’on cherche a calculer existe. Parfois la notion de terminaison semble confondue
avec celle de correction. Par ailleurs, fort peu de candidats ont le réflexe d’exhiber un
variant/invariant, puis de justifier. Beaucoup de réponses indiquent simplement « l'algorithme
termine car il y a un nombre fini d’arétes » sans lien avec la fusion.

Question rarement traitée mais lorsque c'est le cas c'est souvent correctement fait. Dans le cas
contraire I'ensemble est souvent trés confus. L'invariant « H est un sous-graphe acyclique de T* »
est rarement formulé.

Les explications fournies étaient souvent trop superficielles, manquant de rigueur et de détails. La
complexité est rarement bien justifiée : on attendait une réponse courte, mais suffisamment
précise. Le type de la fonction est souvent mal écrit. Par « type », on n’entend pas récursif ou
impératif.

Question bien réussie. La boucle while not (est_connexe h) est généralement correcte. On
observe de nombreux problémes de parenthésage dans not est_connexe g, non pénaliseés, ou de
while est_connexe h = false qui dénote une pratique limitée des booléens.

On observe trop peu d’explications claires justifiant le raisonnement. En (a), il ne suffit pas de dire
qu'une aréte slre réunit deux composantes connexes : il faut dénombrer ces arétes sdres.
Certaines solutions parlent de « division par 2 » sans justification. En (b) la complexité O(]A| log
IS|) avec justification est obtenue dans trés peu de cas. Peu combinent les complexités des
appels. En (c) les réponses sont acceptables pour ceux engagés, mais avec beaucoup
d’abandons. Le cas du meilleur cas est cependant bien compris par ceux qui y répondent.

6/8

Téléchargé gratuitement sur Doc-Solus.fr



PARTIE IV - CHEMIN DE BANDE PASSANTE MAXIMALE

Cette partie courte mais exigeante, liant arbres couvrants et bandes passantes, a permis de faire une
bonne distinction entre les candidats rigoureux et ceux hésitants sur la formalisation algorithmique. Les
candidats ont du mal a faire le lien entre poids d’arétes, bandes passantes et arbres couvrants. Les
démonstrations par 'absurde sont mal maitrisées. Le taux de non-réponses est trés éleve, suggérant un
abandon.

Q26. Question généralement bien traitée. Certaines copies proposent des chemins non optimaux
comme le chemin 0-2-3-1 de bande passante 9 ou simplement I'aréte 0-1 (non existante). Ceci est
peut-étre lié a une mauvaise compréhension du probléme initial.

Q27. Question trés délicate peu traitée. Trés peu de copies ont traités les deux cas. L'avancée de la
réflexion a été valorisée.

Q28. Le résultat étant donné dans I'énoncé, on attend ici des arguments précis et détaillés. Les
réponses sont souvent partielles et sans réelle rigueur. L'idée est souvent comprise mais oubli
fréquent de justifier que le minimum est atteint dans A*. Le cas non connexe (blim = -«) est bien
traité, mais le lien avec min p(a) dans T* est rarement démontré rigoureusement.

PARTIE V - JEU SUR UN GRAPHE

La partie V, en Python, méle théorie des jeux et programmation. Cette partie trés discriminante a
souvent été laissée de cote, probablement en partie par manque de temps. Les candidats ont des
difficultés avec la modélisation du jeu et les algorithmes de type min-max. Seules les questions de
programmation basique sont bien réussies.

Q29. L’'argument du variant (nombre d’arétes restantes) est souvent présent, mais parfois mal formulé.
Souvent il est juste écrit « nombre d'arétes fini », ce qui ne justifie rien.

Q30. Les candidats doivent donner au correcteur le moyen de s’assurer rapidement de la validité de
leur exemple. Il est bon de dessiner le graphe choisi, de signaler les arétes prises par chacun des
joueurs, de donner I'ordre dans lequel les arétes sont prises et d’expliquer pourquoi MaxDébit n’a
pas gagné. De nombreuses copies indiquent faussement que, dans leur exemple, le sous-graphe
de MinLatence est connexe, alors qu’en réalité il a certes une seule composante étendue, mais
aussi des sommets isolés.

Q31. Encore une fois, il n’a pas toujours été compris que la connexité du graphe obtenu par un joueur
est celle du graphe avec tous les sommets présents initialement et pas seulement les sommets
extrémités des arétes jouées.

Q32. Question bien traitée. La condition 0 not in etat est souvent trouvée.

Q33. Question bien traitée. La création de la liste résultat est bien comprise. Plusieurs candidats
oublient d’utiliser etat.copy() et/ou modifient I'état original.

7/8

Téléchargé gratuitement sur Doc-Solus.fr



Q34.

Q35.

Q36.

Q37.

Q38.

On attendait que soient mobilisés le vocabulaire et les algorithmes sur les attracteurs, qui sont au
programme et trop peu connus. Un score 0 ne signifie pas qu'aucun joueur ne peut gagner. Les
réponses sont souvent floues et cette question de cours est trés discriminante.

Trés peu de réponses satisfaisantes. Peu de candidats expliquent que MaxDébit doit jouer vers
une configuration de score 1.

Question diversement traitée. Certaines copies présentent globalement la bonne structure de
programme, mais font des appels a score au lieu de score_memo pour calculer les fils, sans que
'on puisse dire s'il s’agit vraiment d’'une erreur de compréhension ou si c’est simplement une
erreur d’inattention due au manque de temps a la fin du sujet. Certaines solutions ne mémoisent
que les feuilles.

Question trés bien traitée par les quelques candidats qui I'abordent.

Question trés délicate et peu abordée pour laquelle on a valorisé la réflexion. Quelques réponses
excellentes qui ont bien compris 'argument du « vol de stratégie ».

8/8

Téléchargé gratuitement sur Doc-Solus.fr



	1/ PRÉSENTATION DU SUJET
	2/ REMARQUES gÉnÉraleS
	3/ rEMARQUES SPÉCIFIQUES
	PARTIE I - Base de données du réseau
	PARTIE II - Arbre couvrant de poids maximal
	PARTIE III - Recherche d’un arbre couvrant de poids maximal
	PARTIE IV - Chemin de bande passante maximale
	PARTIE V - Jeu sur un graphe


