sur deux). Que dire de la matrice unité ?

L'un des buts des épreuves de mathématiques, plus encore que de tester les connaissances, est de mettre en évidence « l'esprit scientifique » avec ses exigences de rigueur et de probité intellectuelle.

Ajoutons qu'il y a aussi de très bons candidats, qui ont dominé le sujet, tant au niveau des concepts que des calculs pas toujours évidents, et qui ont su exploiter leurs connaissances.

Sciences physiques

Physique

On trouvera entre parenthèses le pourcentage de bonnes réponses parmi l'ensemble des candidats suivi du pourcentage de bonnes réponses parmi le premier tiers des candidats classés par ordre de mérite.

- I.A.1. L'effet due à la force d'inertie d'entraînement est inclus dans g par définition (25%/60 %).
 - Son absence a été « justifiée » par les raisons les plus fantaisistes (référentiel terrestre en rotation uniforme par rapport au référentiel géocentrique annulant l'accélération d'entraînement ! Ou alors accélération d'entraînement incluse dans la dérivée particulaire !).
 - Les termes de l'équation (1) sont des forces volumiques (70 %/70 %)
- I.A.2. La statique d'un gaz isotherme n'est pas celle des liquides ! (40 %/70 %) Peu de candidats retrouvent ce résultat du cours
 - Les 2/3 des candidats, ayant écrit la décroissance exponentielle de la pression, reconnaissent dans l'exposant de cette exponentielle l'épaisseur caractéristique demandée.
- I.A.4. Expression du nombre de Rossby (60 %/90 %).
- I.A.5. Il fallait multiplier vectoriellement par e_z les 2 termes de l'équation (2) simplifiée et se souvenir de l'expression du double produit vectoriel (ou la posséder dans sa calculette) (10 %/25 %). Cette question aurait été plus raisonnablement sélective si l'énoncé avait rappelé cette expression du double produit vectoriel.
- I.A.6. v_y est une fonction paire de λ (5 %/15 %). Cette propriété de symétrie demandait d'ailleurs une justification.
- I.A.7. L'application numérique n'est réussie que par la moitié des candidats ayant établi l'expression littérale de v_y .
- I.B.1. La conservation du débit volumique se justifie par l'hypothèse de l'écoulement incompressible (22 %/25 %) et non par une recopie en vrac de toutes les hypothèses du problème ou par l'indication d'une hypothèse non présente : l'incompressibilité du fluide.
 - L'élargissement de la section du tube de courant est la conséquence du ralentissement du vent derrière l'éolienne (60 %/75 %).
- I.B.2.,3. Comme par le passé, le jury a été très exigeant sur l'application des théorèmes de la physique à un système fermé suivi dans un régime stationnaire :
 - définition soigneuse du système fermé (50 %/90 %);
 - conséquences de l'hypothèse de stationnarité (40 %/70 %);
 - calcul soigneux des variations des grandeurs extensives associées (50%/80 %);
 - bilan soigneux des actions extérieures sans oublier la pression uniforme Po sur une surface fermée (20 %/40 %).
 - Rappelons avec force que les théorèmes d'Euler ou de Reynolds ne sont pas au programme et de ce fait ne peuvent être utilisés pour répondre à cette question!
- I.B.3. L'erreur d'énoncé (S_R au lieu de S_E) n'a pas gêné outre mesure les candidats.
 - Il fallait justifier que la résultante des forces pressantes sur la paroi latérale du système n'intervient pas (2 %/4 %)
 - L'utilisation du théorème de Bernoulli (40 %/60 %) est à justifier à partir de la forme restreinte du théorème appliquée à une ligne de courant (20%/40 %).
- I.B.4. Un nombre non négligeable de candidats a trouvé le résultat (moyenne arithmétique des vitesses à l'entrée et la sortie) sans avoir répondu aux questions précédentes. Cela ne pouvait pas ramener de point.
- I.B.5. L'obstacle à l'écoulement (le rotor) fait apparaître une couche limite traduisant les effets de la viscosité(10 %/20 %). La confusion entre écoulement visqueux, écoulement turbulent et écoulement rotationnel est fréquente.

- I.B.6. *P* doit être positif (attention à la définition de F) (20 %/40 %).
- I.B.8. Lorsque le calcul numérique de la puissance maximum de chaque éolienne est correctement traité (10 %/10 %), peu de candidats interprètent le rapport P/Pmax comme le rendement de conversion d'énergie mécanique en énergie électrique de la génératrice.
- I.C. La représentation des forces (10 %/20 %) de traînée et de portance est bien souvent incohérente avec le sens de rotation du rotor. C'est souvent la conséquence d'une question I.C.1. (40 %/60 %) avec une erreur de signe.
 - Les courbes de la figure 8 doivent conduire le candidat à proposer des pales longues (quelques %) et vrillées (10 %/15 %).
- II.A.1. Le jury a accepté une unité «magnétique » ou « technique ».
- II.A.2. Le jury n'a pas accepté un réseau de courbes contradictoire avec la question d'après (β constante caractéristique de la machine) (40 %/40 %).
- II.A.5. La nature des interrupteurs doit être justifiée par référence aux points de fonctionnement (30%/50%).
- II.A.6.,7. Quelques très rares candidats ont mené à bien la méthode imposée pour déterminer l'ondulation et la valeur moyenne. D'autres s'en sont sortis (5%/20%) en prenant l'initiative de déterminer d'abord la valeur moyenne par la méthode habituelle du cours (calcul des valeurs moyennes des différents termes d'une équation différentielle linéaire à coefficients constants) puis d'exploiter cette valeur moyenne pour déterminer l'ondulation.
- II.A.8. Le choix de $\alpha = 0.5$ correspond à l'ondulation maximale par rapport aux variations de α , toutes choses égales par ailleurs. Il correspond également à la plage maximale de variation de α pour réaliser l'asservissement.
- II.B.1a. De nombreux candidats annoncent la valeur de i_e sans l'avoir préalablement établie, et sans proposer la moindre justification. Est-ce un choix heureux lié à des considérations d'homogénéité pour e et R_s et à un souvenir du rôle de α pour un hacheur direct plutôt bien connu des candidats ?
- II.B.1b. La relation demandée n'a pas été obtenue.
- II.B.1d. Il faut introduire un correcteur intégral (10 %/20 %).
- II.B.2a. Cette relation n'a pas non plus été obtenue.
- II.C.1. La diode de protection empêche de faire fonctionner la MCC en moteur (30 %/50 %).
- II.D.1. Les oscillations du comparateur simple sont très rarement justifiées.
 - Beaucoup de candidats évoque une oscillation autour de la valeur u_d sans voir que l'ouverture de K_d provoque une augmentation de la valeur de u_a (car i_a devient négatif) qui redevient immédiatement supérieur à u_d .
- II.D.2. Le jury a exigé une justification soigneuse du tracé du cycle et de son sens de parcours à partir du calcul de ε et des conditions de basculement de la tension de sortie de l'AO. (20 %/40 %).
- II.D.5. Le problème analogue du courant de charge n'a pas été compris.
- II.E.1. Le jury a exigé que l'ordre de ce filtre fasse partie des indications caractérisant sa nature : il s'agit donc d'un passe-bas d'ordre 1 (10%/10%).
- II.E.3. Le changement d'origine conduisant à une série en cosinus n'a pas été identifié. Beaucoup de candidats ont d'ailleurs vainement calculé les coefficients a_n sans avoir fait ce décalage des temps, ce qui ne leur a rapporté aucun point.
 - L'absence de $1/\pi$ dans l'expression de a_n a parfois été signalée par les candidats et n' a pas conduit les autres à perdre des points.
- II.E.6. Les candidats qui se sont consacrés à cette question purement calculatoire s'en sont bien sortis (10 %/10 %).
- II.E.8. Les quelques candidats ayant abordé cette question ont quasi-systématiquement multiplié la puissance consommée par le moteur par le facteur de puissance avant de l'additionner à la puissance consommée par les lampes pour obtenir la puissance totale.

Physique-Chimie

Le sujet

Le sujet de Physique-Chimie 2006 proposait une étude des propriétés physico-chimiques de l'eau de mer.

Il abordait notamment les thèmes suivants :

- La polarisation électrique de l'eau et des ions contenus dans l'eau de mer ;
- Détermination de la chlorinité et de la salinité de l'océan ;
- Propagation des ondes électromagnétiques ;