MATHEMATIQUES I - filière PC

I) REMARQUES GENERALES

Cette épreuve traite d'un problème bien connu sous le nom de "Problème de transport de Monge en dimension 1". Celui-ci consiste à optimiser le coût global d'une répartition de masse vers une autre. L'objectif étant de majorer ce coût.

Le sujet a été moyennement compris dans l'ensemble, les notes sont assez bien réparties ; la proportion des bonnes copies et celle des mauvaises est sensiblement la même. Le barème a été bien adapté.

II) REMARQUES PARTICULIERES

- 1) et 2) Dès le préambule on rencontre déjà des insuffisances dans la définition d'un C^1 -difféomorphisme ; la condition $\Psi(x) \neq 0$ pour tout $x \in I$ n'est toujours pas mise en évidence même si l'expression de la dérivée de Ψ^{-1} est correcte.
- 3) L'étude de la convergence des intégrales impropres a été souvent négligée ou incorrectement traitée malgré l'avertissement en caractère gras au début du sujet. L'étude de la convergence de $\int_{-\infty}^{+\infty} e^{-x^2} dx$ n'est pas du programme.

On constate des difficultés pour établir la continuité de f, celle-ci étant nécessaire pour montrer la dérivabilité de F. Certains candidats ne semblent pas à l'aise pour dériver une intégrale par rapport à une borne, lorsque celle-ci est finie. Des résultats pourtant évidents semblent avoir échappé à certains, par exemple f > 0 alors F est strictement croissante. On s'aperçoit que beaucoup ne sont pas familiers avec la notion de difféomorphisme surtout quand le 2) n'est pas traité correctement.

- 4) et 5) Beaucoup de difficultés malgré l'indication du 3) et faute de considérer F_f^{-1} $0F_1$. Ici encore la continuité de f est nécessaire pour pouvoir affirmer que si l'intégrale d'une fonction ≥ 0 est nulle, alors la fonction est nulle.
 - 6) Cette question a souvent été traitée.
- 7) et 8) La présentation des changements de variables est souvent mauvaise, créant un conflit de notations. Il convient de changer les symboles en posant par exemple $u = \Phi(t)$
- 9) Cette question n'a été que rarement abordée et traité. Le rôle de A n'est pas souvent compris. Certains affirment Φ croissante entraîne Φ^2 croissante sans se soucier du signe.
- 10) et 11) Souvent traité plus ou moins correctement. Cela a permis à certains de gagner des points de manière significative.
- 12) Des difficultés sont apparues notamment pour majorer f(u)Lnf(u) sans tenir compte du signe de Lnf(u). C'est là précisément que le préambule n'a pas été compris.
 - 13) Cette question a été traitée par ceux qui avaient fait la 7).
 - 14), 15) et 16) Ces questions ont souvent été abordées avec succès.

III) CONCLUSION

Il est souhaitable pour certains candidats d'améliorer aussi bien la présentation que la rédaction. Résoudre une question ne se limite pas uniquement à aligner des calculs. Il faut bien citer par exemple les théorèmes utilisés.

Aussi est-il indispensable de faire la part entre les conditions nécessaires, suffisantes et équivalentes. Une meilleure argumentation mathématique pourra convaincre le correcteur de la qualité des connaissances du candidat.