

Mathématiques 2

PC

202

CONCOURS CENTRALE•SUPÉLEC

4 heures

Calculatrice autorisée

Notations

Si a et b sont deux entiers tels que $a \leq b$, on note $[\![a,b]\!]$ l'ensemble des entiers k tels que $a \leq k \leq b$.

Pour $n \in \mathbb{N}$, on appelle polynôme trigonométrique de degré inférieur ou égal à n toute fonction de \mathbb{R} dans \mathbb{C} de la forme

$$x \mapsto \sum_{k=-n}^{n} c_k e^{ikx},$$

où, pour tout $k \in [-n,n]$, $c_k \in \mathbb{C}$. On note \mathcal{T}_n l'ensemble des polynômes trigonométriques de degré inférieur ou égal à n. C'est un \mathbb{C} -espace vectoriel, ce qu'on ne demande pas de vérifier.

On note $\mathcal{C}^0_{2\pi}$ le \mathbb{C} -espace vectoriel des fonctions continues 2π -périodiques de \mathbb{R} dans \mathbb{C} et $\mathcal{C}^1_{2\pi}$ le sous-espace vectoriel des fonctions de classe \mathcal{C}^1 2π -périodiques. Pour $g \in \mathcal{C}^0_{2\pi}$ et h > 0, on pose :

$$\omega_g(h) = \sup_{|t-s| \le h} |g(s) - g(t)|.$$

Pour toute fonction bornée f de \mathbb{R} dans \mathbb{C} , on pose :

$$||f||_{\infty} = \sup_{t \in \mathbb{R}} |f(t)|.$$

Partie A – Préliminaires

- **Q1.** Montrer que si g est la fonction sinus, alors, pour tout h > 0, $\omega_g(h) \leq h$.
- **Q2.** (a) Montrer que, pour tous $g \in \mathcal{C}_{2\pi}^0$ et h > 0, $\omega_g(h)$ est un réel bien défini.
 - (b) On suppose que $g \in \mathcal{C}^1_{2\pi}$. Montrer que, pour tout h > 0, $\omega_g(h) \leqslant h \|g'\|_{\infty}$. En déduire que $\lim_{h \to 0} \omega_g(h) = 0$. On admet que $\lim_{h \to 0} \omega_g(h) = 0$ est vrai pour tout $g \in \mathcal{C}^0_{2\pi}$.
- Q3. Soit h et h' deux réels strictement positifs et soit $g \in \mathcal{C}^1_{2\pi}$.
 - (a) Montrer que, si $h \leq h'$, alors $\omega_g(h) \leq \omega_g(h')$.
 - (b) Montrer que $\omega_g(h+h') \leq \omega_g(h) + \omega_g(h')$.
 - (c) En déduire que pour tout entier naturel n supérieur ou égal à 1 et pour tout réel λ strictement positif :

$$\omega_g(nh) \leqslant n\omega_g(h)$$
 et $\omega_g(\lambda h) \leqslant (1+\lambda)\omega_g(h)$.

Q4. Soit $g \in \mathcal{C}_{2\pi}^0$. Montrer que pour tout $x \in \mathbb{R}$,

$$\int_{-\pi+x}^{\pi+x} g(t) dt = \int_{-\pi}^{\pi} g(t) dt.$$

Q5. Soit $g \in \mathcal{C}^0_{2\pi}$ et $n \in \mathbb{N}$. Pour tout $p \in \mathcal{T}_n$, on note $\Delta(p)$ la fonction de \mathbb{R} dans \mathbb{C} définie par

$$\forall x \in \mathbb{R}, \quad \Delta(p)(x) = \int_{-\pi}^{\pi} p(x-t)g(t) \, dt.$$

Montrer que Δ définit un endomorphisme de \mathcal{T}_n .

Partie B -

I – La fonction J_n

Pour tout $n \in \mathbb{N}$, on définit la fonctions φ_n de \mathbb{R} dans \mathbb{C} en posant, pour tout $t \in \mathbb{R}$,

$$\varphi_n(t) = e^{-ni\frac{t}{2}} \sum_{k=0}^n e^{ikt}$$
 et $f_n(t) = \varphi_n(t)^4$.

Dans cette sous-partie, on fixe un entier $n \in \mathbb{N}$.

Q6. Montrer que, pour tout réel t n'appartenant pas à $2\pi\mathbb{Z}$,

$$\varphi_n(t) = \frac{\sin(n+1)\frac{t}{2}}{\sin\frac{t}{2}} \quad \text{et} \quad f_n(t) = \left(\frac{\sin(n+1)\frac{t}{2}}{\sin\frac{t}{2}}\right)^4.$$

- **Q7.** Montrer que φ_n et φ_n^2 appartiennent à \mathcal{T}_n , puis que f_n appartient à \mathcal{T}_{2n} .
- **Q8.** Montrer qu'il existe un réel strictement positif c_n tel que $\int_{-\pi}^{\pi} c_n f_n(t) dt = 1$.

Pour tout $n \in \mathbb{N}$, on pose désormais $J_n = c_n f_n$, de sorte que J_n est une fonction réelle positive vérifiant

$$J_n \in \mathcal{T}_{2n}$$
 et $\int_{-\pi}^{\pi} J_n(t) dt = 1$.

II – Une majoration de $\int_{-\pi}^{\pi} |t| J_n(t) dt$

Soit $n \in \mathbb{N}$.

Q9. Montrer que
$$\int_{-\pi}^{\pi} |t| J_n(t) dt = \frac{\int_0^{\pi} t f_n(t) dt}{\int_0^{\pi} f_n(t) dt}.$$

- **Q10.** Montrer que pour $t \in \left[0, \frac{\pi}{2}\right], \frac{2}{\pi}t \leqslant \sin t \leqslant t$.
- **Q11.** En déduire que $\int_0^\pi t f_n(t) \, \mathrm{d}t \leqslant \pi^4 \left(\frac{n+1}{2}\right)^2 \int_0^{(n+1)\frac{\pi}{2}} \frac{\sin^4 u}{u^3} du.$
- **Q12.** En déduire également que $\int_0^\pi f_n(t)\,\mathrm{d}t\geqslant 2(n+1)^3\int_0^{(n+1)\frac{\pi}{2}}\frac{\sin^4 u}{u^4}du.$
- **Q13.** Montrer qu'il existe a>0 tel que, pour tout $n\in\mathbb{N},$ $\int_{-\pi}^{\pi}|t|J_n(t)\,\mathrm{d}t\leqslant\frac{a}{n+1}.$

III – Approximation uniforme par des polynômes trigonométriques

Dans cette sous-partie, on fixe $g \in C_{2\pi}^0$.

Pour tout $n \in \mathbb{N}$, on définit la fonction $T_n g$ en posant, pour tout $x \in \mathbb{R}$,

$$T_n g(x) = \int_{-\pi}^{\pi} J_n(x - t)g(t) dt.$$

L'objectif de cette sous-partie est de montrer que (T_ng) est une suite de polynômes trigonométriques qui converge uniformément vers g sur \mathbb{R} .

Q14. Pour tous $n \in \mathbb{N}$ et $x \in \mathbb{R}$, montrer que

$$T_n g(x) = \int_{-\pi}^{\pi} J_n(t) g(x-t) dt \quad \text{et} \quad g(x) = \int_{-\pi}^{\pi} J_n(t) g(x) dt$$

En déduire que $|T_n g(x) - g(x)| \le \int_{-\pi}^{\pi} J_n(t) |g(x-t) - g(x)| dt$.

Q15. Le cas C^1 . On suppose, seulement dans cette question, que g est C^1 .

(a) Montrer que, pour tout $n \in \mathbb{N}$,

$$||T_n g - g||_{\infty} \leqslant \frac{a||g'||_{\infty}}{n+1},$$

où le réel a a été défini à la question $\mathbf{Q}\mathbf{13}$.

- (b) Conclure que $(T_n g)$ est une suite de polynômes trigonométriques qui converge uniformément vers g sur \mathbb{R} .
- **Q16.** Le cas C^0 . Dans cette question, on ne suppose plus que g est de classe C^1 .

On rappelle le résultat admis à la question $\mathbf{Q2}$: $\lim_{t\to 0} \omega_g(h) = 0$.

(a) Montrer que, pour tout $n \in \mathbb{N}^*$ et tous réels t et x,

$$|g(x-t)-g(x)| \leq (1+n|t|)\omega_a(1/n).$$

(b) En déduire qu'il existe b > 0 tel que, pour tout $n \in \mathbb{N}^*$,

$$||T_n q - q||_{\infty} \leq b \,\omega_q(1/n).$$

(c) Conclure que la suite $(T_n g)$ converge uniformément vers g sur \mathbb{R} .

Partie C -

Dans cette partie, on considère l'espace vectoriel $\mathbb{C}[X]$ des polynômes à coefficients complexes. Pour $n \in \mathbb{N}$, on note $\mathbb{C}_n[X]$ le sous-espace vectoriel des polynômes de degré inférieur ou égal à n.

I -

Dans cette sous-partie on fixe un entier $n \in \mathbb{N}^*$ et on note T le polynôme $X^n + 1$.

Q17. Montrer que T admet n racines simples dans \mathbb{C} .

On note z_1, \ldots, z_n les racines de T.

Q18. Soit
$$k \in [\![1,n]\!]$$
. Montrer que $\prod_{j \neq k} (z_k - z_j) = T'(z_k)$.

Soit $\ell \in [\![0,n]\!]$. On considère la fonction rationnelle F donnée par $F = \frac{X^\ell}{X^n+1}$.

On rappelle que, par décomposition en éléments simples de F, il y a existence et unicité de μ_1, \ldots, μ_n dans \mathbb{C} et de E dans $\mathbb{C}[X]$ tels que

$$F = \sum_{k=1}^{n} \frac{\mu_k}{X - z_k} + E.$$

- **Q19.** Montrer que, pour tout $k \in [1,n]$, $\mu_k = -\frac{z_k^{\ell+1}}{n}$ et que E est soit le polynôme nul, soit le polynôme constant égal à 1.
- **Q20.** Calculer F'(1) et en déduire que $\ell = \frac{n}{2} + \frac{2}{n} \sum_{k=1}^{n} \frac{z_k^{\ell+1}}{(z_k-1)^2}$.
- Q21. En déduire que :
 - (a) pour tout polynôme $P \in \mathbb{C}_n[X]$, $XP'(X) = \frac{n}{2}P(X) + \frac{2}{n}\sum_{k=1}^n \frac{z_kP(z_kX)}{(z_k-1)^2}$;

(b)
$$\sum_{k=1}^{n} \frac{z_k}{(z_k - 1)^2} = -\frac{n^2}{4}.$$

II -

Pour tout $P \in \mathbb{C}[X]$, on pose $||P|| = \sup_{|z|=1} |P(z)|$.

- **Q22.** Montrer que $\|.\|$ est une norme sur $\mathbb{C}[X]$.
- **Q23.** Montrer que, si z est un nombre complexe de module 1 et si $z \neq 1$, alors $\frac{z}{(z-1)^2}$ est un réel négatif.
- **Q24.** À l'aide de **Q21**, en déduire que pour tout $P \in \mathbb{C}_n[X]$, $||P'|| \leq n||P||$.
- **Q25.** En déduire que pour tout $q \in \mathcal{T}_n$, $||q'||_{\infty} \leq 3n||q||_{\infty}$.

Partie D – Fonctions höldériennes

Soit g une fonction définie sur un intervalle $I \subset \mathbb{R}$ et à valeurs dans \mathbb{C} et soit $\alpha \in]0,1]$. On dit que g est α -höldérienne s'il existe K > 0 tel que, pour tous réels x et y de l'intervalle I, $|g(x) - g(y)| \leq K|x - y|^{\alpha}$.

I - Exemples

Soit $\alpha \in]0,1[$ et soit h_{α} la fonction définie sur \mathbb{R}_{+} par $h_{\alpha}: x \mapsto x^{\alpha}$.

- **Q26.** Soit y un réel positif, montrer que pour tout $x \ge y$ on a : $0 \le x^{\alpha} y^{\alpha} \le (x y)^{\alpha}$.
- **Q27.** En déduire que h_{α} est α -höldérienne sur \mathbb{R}_{+} .
- **Q28.** Soit $\beta \in [0,1]$ tel que $\beta \neq \alpha$. Montrer que h_{α} n'est pas β -höldérienne.

Soit k la fonction définie sur \mathbb{R}_+ par

$$k: x \mapsto \begin{cases} x \ln x & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$$

- **Q29.** Soit $y \in [0,1]$. Montrer que pour tout $x \in [0,1-y]$, $(x+y)\ln(x+y) x\ln x \le (y-1)\ln(1-y)$.
- **Q30.** En déduire que k est α -höldérienne sur [0,1] pour tout $\alpha \in [0,1]$.

II – Espace $\mathcal{H}^{\alpha}_{2\pi}$ et approximation uniforme par des polynômes trigonométriques

Dans la suite du problème, pour $\alpha \in]0,1[$, on note $\mathcal{H}^{\alpha}_{2\pi}$ l'ensemble des fonctions α -höldériennes 2π -périodiques de \mathbb{R} dans \mathbb{C} .

Pour tout $f \in \mathcal{C}_{2\pi}^0$, on pose $\delta_n(f) = \inf_{p \in \mathcal{T}_n} ||f - p||_{\infty}$.

- **Q31.** Montrer que $\mathcal{H}_{2\pi}^{\alpha}$ est un sous-espace vectoriel de $\mathcal{C}_{2\pi}^{0}$.
- **Q32.** Montrer que si $g \in \mathcal{H}_{2\pi}^{\alpha}$, alors $\delta_n(g) = O\left(\frac{1}{n^{\alpha}}\right)$.

III – Étude d'une réciproque

L'objectif de cette sous-partie est d'établir une réciproque à la question $\mathbf{Q32}$.

On fixe un réel $\alpha \in]0,1[$ et une fonction $f \in \mathcal{C}^0_{2\pi}$ telle que $\delta_n(f) = O\left(\frac{1}{n^{\alpha}}\right)$. Il existe ainsi un réel C > 0 tel que, pour tout $n \in \mathbb{N}^*$, $\delta_n(f) \leqslant \frac{C}{n^{\alpha}}$.

Q33. Pour $n \in \mathbb{N}$, montrer qu'il existe $q_n \in \mathcal{T}_n$ tel que $\delta_n(f) = \|f - q_n\|_{\infty}$.

Pour tout $n \in \mathbb{N}$, on considère un polynôme $p_n \in \mathcal{T}_{2^n}$ tel que $||f - p_n||_{\infty} = \delta_{2^n}(f)$.

Q34. Montrer, en appliquant l'inégalité établie à la question **Q25**, qu'il existe un réel C'>0 tel que, pour tout $n\in\mathbb{N}$,

$$||p'_{n+1} - p'_n||_{\infty} \leqslant C' 2^{n(1-\alpha)}.$$

Q35. En déduire que, pour tout $n \in \mathbb{N}$,

$$\|p_n'\|_{\infty} \leqslant \|p_0'\|_{\infty} + \frac{C'}{2^{1-\alpha}-1} 2^{n(1-\alpha)}.$$

Q36. En déduire l'existence d'un réel A > 0 tel que, pour tout $n \in \mathbb{N}$,

$$||p_n'||_{\infty} \leqslant A2^{(1-\alpha)n}.$$

- **Q37.** Montrer que, pour tout $(x,y) \in \mathbb{R}^2$, $|f(x) f(y)| \leqslant C2^{1-n\alpha} + A2^{(1-\alpha)n}|x-y|$.
- **Q38.** En déduire que f est $\alpha\text{-h\"{o}ld\'{e}r\'{i}enne}.$

Indication : lorsque $0 < |x-y| \leqslant 1$, on pourra choisir $n \in \mathbb{N}$ tel que $\frac{1}{2^{n+1}} \leqslant |x-y| \leqslant \frac{1}{2^n}$ et majorer |f(x)-f(y)| à l'aide de la question précédente.

⇒ Fin ⇒