

Mathématiques 1

MP, MPI

2025

CONCOURS CENTRALE SUPÉLEC 4 heures

Calculatrice autorisée

Irrationalité de $\zeta(2)$

Notations

- Si $x \in \mathbb{R}$, on note $\lfloor x \rfloor$ sa partie entière.
- Si p est un nombre premier et si $n \in \mathbb{N}^*$, on note $v_p(n)$ la valuation p-adique de n, c'est-à-dire le plus grand entier naturel k tel que p^k divise n.
- Si x est un réel supérieur ou égal à 1, on note $\pi(x)$ le nombre de nombres premiers inférieurs ou égaux à x. En d'autres termes,

$$\pi(x) = \operatorname{card} \left(\{ p \text{ premier}, \ p \leqslant x \} \right) = \sum_{\substack{p \leqslant x \\ p \text{ premier}}} 1$$

où card(A) désigne le cardinal de l'ensemble fini A.

Partie A – Un encadrement de la fonction π

Le but de cette partie est d'établir l'encadrement suivant de la fonction π :

$$\forall x \in [3, +\infty[\qquad \frac{\ln(2)}{6} \frac{x}{\ln(x)} \leqslant \pi(x) \leqslant 4 \frac{x}{\ln(x)}.$$

I – Calculs préliminaires

Q1. Soit $n \in \mathbb{N}^*$. Montrer que

$$\prod_{\substack{n+2\leqslant p\leqslant 2n+1\\ n\text{ premier}}}p\leqslant \binom{2n+1}{n}\leqslant 4^n.$$

Q2. Montrer que, pour tout $n \in \mathbb{N}^*$,

$$\prod_{\substack{p \leqslant n \\ \text{opremier}}} p < 4^n.$$

On pourra procéder par récurrence et effectuer l'hérédité en discutant suivant la parité de n.

Q3. En déduire que, pour tout réel $x \ge 1$,

$$\prod_{\substack{p \leqslant x \\ \text{n proprior}}} p < 4^x.$$

Q4. Montrer que, pour tout $n \in \mathbb{N}^*$,

$$\frac{4^n}{2n} \leqslant \binom{2n}{n} < 4^n.$$

Q5. Soit p un nombre premier. Montrer que, pour tout $n \in \mathbb{N}$,

$$v_p(n!) = \sum_{k=1}^{+\infty} \left\lfloor \frac{n}{p^k} \right\rfloor.$$

Q6. En déduire que, pour tous $n \in \mathbb{N}^*$, $k \in \mathbb{N}$ et p nombre premier : si p^k divise $\binom{2n}{n}$, alors $p^k \leqslant 2n$.

II – Majoration de $\pi(x)$

Q7. Soit $n \in \mathbb{N}^*$. Justifier que

$$\prod_{\substack{p \leqslant n \\ p \text{ premier}}} p \geqslant \prod_{\substack{\sqrt{n}$$

Q8. En déduire que, pour tout $n \in \mathbb{N}^*$,

$$n^{(\pi(n)-\pi(\sqrt{n}))/2} < 4^n$$
.

Q9. Soit $n \in \mathbb{N}$, $n \geqslant 2$. Justifier que

$$\pi(\sqrt{n}) \leqslant \sqrt{n} < \frac{n}{\ln(n)},$$

puis en déduire que

$$\pi(n) \leqslant 4 \frac{\ln(n)}{n}$$
.

On pourra remarquer que $2 > \ln(4)$.

Q10. Soit $x \geqslant 3$. En utilisant la croissance de la fonction $t \mapsto \frac{t}{\ln(t)}$ sur l'intervalle [e, $+\infty$ [, montrer que $\pi(x) \leqslant 4\frac{x}{\ln(x)}$.

III – Minoration de $\pi(x)$

Q11. Soit $n \in \mathbb{N}^*$. Montrer que

$$\binom{2n}{n} \leqslant (2n)^{\pi(2n)}.$$

Q12. Soit $n \in \mathbb{N}^*$. Vérifier que

$$\frac{2n\ln(2)}{\ln(2n)} - 1 \geqslant \frac{n\ln(2)}{\ln(2n)}$$

puis en déduire que

$$\pi(2n) \geqslant n \frac{\ln(2)}{\ln(2n)}.$$

Q13. Soit $x \ge 3$. Montrer que

$$\pi(x) \geqslant \frac{\ln(2)}{6} \frac{x}{\ln(x)}.$$

On pourra poser n = |x/2| et utiliser Q12.

L'inégalité précédente a été asymptotiquement améliorée en 1896, ainsi on admettra dans la suite du problème le (difficile) résultat suivant, appelé théorème des nombres premiers,

$$\pi(x) \underset{x \to +\infty}{\sim} \frac{x}{\ln(x)}$$
.

Partie B – Une majoration d'un PPCM

I – Une première majoration

Q14. Soit $r \in \mathbb{N}^*$. Soient a_1, \ldots, a_r des entiers naturels non nuls. Justifier qu'il existe un unique entier naturel $d(a_1, \ldots, a_r)$ tel que

$$a_1\mathbb{Z} \cap a_2\mathbb{Z} \cap \cdots \cap a_r\mathbb{Z} = d(a_1, \dots, a_r)\mathbb{Z}.$$

Q15. Soit $r \in \mathbb{N}^*$. Soient a_1, \ldots, a_r des entiers naturels non nuls. Montrer que $d(a_1, \ldots, a_r)$ est le plus petit entier naturel non nul qui est divisible par a_1, \ldots, a_r .

Soit $r \in \mathbb{N}^*$. Si a_1, \ldots, a_r sont des entiers naturels non nuls, $d(a_1, \ldots, a_r)$ s'appelle le plus petit commun multiple de a_1, \ldots, a_r et on le notera dans la suite $\operatorname{PPCM}(a_1, \ldots, a_r)$.

Pour tout $n \in \mathbb{N}^*$, on note d_n le PPCM des entiers naturels compris entre 1 et n, autrement dit : $d_n = \text{PPCM}(1, 2, \dots, n)$.

Q16. Calculer d_2 , d_3 et d_4 , puis montrer que $d_n \leq n!$ pour tout entier naturel $n \in \mathbb{N}^*$.

II – Une majoration plus fine

Le but de cette sous-partie est d'améliorer la majoration de d_n .

Dans les deux questions suivantes, on fixe un entier naturel non nul n et, pour tout nombre premier p, on note k_p le plus grand entier naturel tel que $p^{k_p} \le n$.

Q17. Montrer que
$$d_n = \prod_{\substack{p \leqslant n \\ p \text{ premier}}} p^{k_p}$$
.

- **Q18.** Pour tout nombre premier p, montrer que $k_p = \left\lfloor \frac{\ln(n)}{\ln(p)} \right\rfloor$. En déduire que $d_n \leqslant n^{\pi(n)}$.
- **Q19.** En déduire qu'il existe un entier naturel N non nul tel que, pour tout $n \geqslant N, d_n \leqslant 3^n$. On pourra utiliser le théorème des nombres premiers mentionné ci-dessus.

Partie C - Un critère d'irrationalité

Soit $\alpha \in \mathbb{R}_+$. On suppose qu'il existe deux suites d'entiers naturels non nuls $(p_n)_{n \in \mathbb{N}}$ et $(q_n)_{n \in \mathbb{N}}$ telles que

$$\lim_{n\to +\infty} \frac{p_n}{q_n} = \alpha \qquad \text{et} \qquad \left|\alpha - \frac{p_n}{q_n}\right| \underset{n\to +\infty}{=} o\left(\frac{1}{q_n}\right).$$

On suppose en outre que pour tout $n \in \mathbb{N}$, $\frac{p_n}{q_n} \neq \alpha$.

Q20. Montrer que α est un nombre irrationnel.

Soit
$$\beta = \sum_{n=1}^{+\infty} \frac{1}{10^{n!}}$$
.

Q21. Justifier que β est bien défini, puis montrer que β est un nombre irrationnel.

Q22. Soit $n \in \mathbb{N}^*$. Justifier que $\zeta(2) = \sum_{k=1}^{+\infty} \frac{1}{k^2}$ est bien défini, puis montrer que l'on peut écrire

$$\sum_{k=1}^{n} \frac{1}{k^2} = \frac{p_n}{q_n}$$

avec $p_n \in \mathbb{N}^*$ et $q_n = d_n^2$.

Q23. Peut-on appliquer le résultat de **Q20** à ces suites $(p_k)_{k \in \mathbb{N}^*}$ et $(q_k)_{k \in \mathbb{N}^*}$ pour conclure sur l'irrationalité de $\zeta(2)$?

Partie D – Calcul d'une intégrale double

I – Une intégrale double

Soient r et s deux entiers naturels strictement positifs tels que $r \geqslant s$.

Q24. Soit $y \in]0,1[$. Justifier que la fonction

$$x \mapsto \frac{x^r y^s}{1 - xy}$$

est intégrable sur [0,1].

On pose, pour $y \in]0,1[$,

$$f_{r,s}(y) = \int_0^1 \frac{x^r y^s}{1 - xy} \, \mathrm{d}x.$$

Q25. Montrer que $f_{r,s}$ est continue et intégrable sur]0,1[.

On pose

$$J_{r,s} = \int_0^1 f_{r,s}(y) \, \mathrm{d}y = \int_0^1 \int_0^1 \frac{x^r y^s}{1 - xy} \, \mathrm{d}x \, \mathrm{d}y.$$

Q26. Montrer que

$$J_{r,s} = \sum_{k=0}^{+\infty} \frac{1}{(r+k+1)(s+k+1)}.$$

II – Une écriture sous forme de quotients

Dans cette sous-partie, on suppose r > s.

 ${\bf Q27.}$ Justifier que

$$\frac{1}{(r+k+1)(s+k+1)} = \frac{1}{r-s} \left(\frac{1}{s+k+1} - \frac{1}{r+k+1} \right).$$

Q28. En déduire que

$$J_{r,s} = \frac{1}{r-s} \sum_{k=0}^{+\infty} \left(\frac{1}{s+k+1} - \frac{1}{r+k+1} \right).$$

 $\mathbf{Q29}$. En déduire que

$$J_{r,s} = \frac{1}{r-s} \sum_{k=s+1}^{r} \frac{1}{k}.$$

Q30. En déduire que l'on peut écrire

$$J_{r,s} = \frac{p_{r,s}}{q_{r,s}}$$

avec $p_{r,s}$ et $q_{r,s}$ des entiers naturels et $q_{r,s}$ divisant d_r^2 .

On admettra que $J_{r,r} = \zeta(2) - \sum_{k=1}^{r} \frac{1}{k^2}$.

Partie E – Une démonstration de l'irrationalité de $\zeta(2)$

On définit sur [0,1] la fonction P_n par :

$$\forall x \in [0,1], \qquad P_n(x) = \frac{1}{n!} \frac{\mathrm{d}^n \left(x^n (1-x)^n \right)}{\mathrm{d} x^n}.$$

Q31. Soit $n \in \mathbb{N}^*$. Justifier que P_n est une fonction polynomiale sur [0,1] de degré n à coefficients dans \mathbb{Z} .

On pose dans la suite

$$P_n(x) = \sum_{k=0}^n a_k x^k$$
$$(1-y)^n = \sum_{k=0}^n b_k y^k$$

avec pour tout $k \in [0, n]$, $a_k \in \mathbb{Z}$ et $b_k \in \mathbb{Z}$.

Q32. Soit $n \in \mathbb{N}^*$. Justifier l'existence de

$$I_n = \int_0^1 \int_0^1 \frac{(1-y)^n P_n(x)}{1-xy} \, dx \, dy$$

et montrer que

$$I_n = \sum_{\substack{r,s=0\\r \neq s \\ r \neq s}}^n a_r b_s J_{r,s} + \sum_{r=0}^n a_r b_r J_{r,r}.$$

Q33. Soit $n \in \mathbb{N}^*$. En déduire qu'il existe deux entiers relatifs p_n et q_n tels que

$$I_n = \frac{p_n + \zeta(2)q_n}{d_n^2}.$$

On admettra dans toute la suite que p_n et q_n sont non nuls pour tout $n \in \mathbb{N}^*$.

Q34. Soit $n \in \mathbb{N}^*$. Montrer que pour tout $y \in]0,1[$,

$$\int_0^1 \frac{P_n(x)}{1 - xy} \, \mathrm{d}x = (-y)^n \int_0^1 \frac{x^n (1 - x)^n}{(1 - xy)^{n+1}} \, \mathrm{d}x.$$

Q35. En déduire que

$$I_n = (-1)^n \int_0^1 \int_0^1 \frac{x^n (1-x)^n y^n (1-y)^n}{(1-xy)^{n+1}} \, \mathrm{d}x \, \mathrm{d}y.$$

Q36. Montrer que

$$\forall (x,y) \in]0,1[^2, \qquad \frac{x(1-x)y(1-y)}{1-xy} \leqslant \frac{5\sqrt{5}-11}{2}.$$

Q37. Soit $n \in \mathbb{N}^*$. En déduire que

$$|I_n| \leqslant \zeta(2) \left(\frac{5\sqrt{5} - 11}{2}\right)^n.$$

Q38. Montrer qu'il existe $N \in \mathbb{N}^*$ tel que pour tout $n \geqslant N$,

$$0 < |p_n + \zeta(2)q_n| \leqslant \zeta(2) \left(\frac{5}{6}\right)^n.$$

On pourra utiliser, sans la prouver, l'inégalité $9\frac{5\sqrt{5}-11}{2}\leqslant \frac{5}{6}.$

Q39. Montrer que $\zeta(2)$ est un nombre irrationnel.

Q40. On admet, uniquement dans cette question, que $\zeta(2) = \frac{\pi^2}{6}$. Montrer que π est un nombre irrationnel.

♦ Fin ♦