

ÉCOLE DES PONTS PARISTECH, ISAE-SUPAERO, ENSTA PARISTECH, TELECOM PARISTECH, MINES PARISTECH, MINES SAINT-ÉTIENNE, MINES NANCY, IMT Atlantique, ENSAE PARISTECH, CHIMIE PARISTECH.

Concours Centrale-Supélec (Cycle International), Concours Mines-Télécom, Concours Commun TPE/EIVP.

CONCOURS 2019

DEUXIÈME ÉPREUVE DE MATHÉMATIQUES

Durée de l'épreuve : 3 heures

L'usage de la calculatrice et de tout dispositif électronique est interdit.

Les candidats sont priés de mentionner de façon apparente sur la première page de la copie :

MATHÉMATIQUES II - PC

L'énoncé de cette épreuve comporte 4 pages de texte.

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Etude d'une série de fonctions

Le sujet est consacré à l'étude de quelques propriétés de dérivabilité de la fonction $R: \mathbf{R} \to \mathbf{C}$ définie par

$$R(x) = \sum_{n=1}^{\infty} \frac{\sin(n^2 x)}{n^2}$$
 pour tout $x \in \mathbf{R}$.

Notations

- On note |x| la partie entière d'un réel x.
- Soit $(u_n)_{n\in\mathbf{Z}}$ une famille de nombres complexes indexée par l'ensemble \mathbf{Z} des entiers relatifs. Dans le cas où les séries $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 1} u_{-n}$ sont toutes deux convergentes, on pose

$$\sum_{n \in \mathbf{Z}} u_n = \sum_{n=0}^{\infty} u_n + \sum_{n=1}^{\infty} u_{-n}.$$

I Préliminaires

On établit dans cette partie quelques résultats utiles dans la suite du problème.

- 1. Montrer que la fonction R est bien définie et qu'elle est continue sur \mathbf{R} .
- 2. Montrer que l'intégrale $\int_0^{+\infty} \frac{\sin(x^2)}{x^2} dx$ est convergente.

Dans la suite du problème, on admet que

$$\int_0^{+\infty} \frac{\sin(x^2)}{x^2} \, \mathrm{d}x = \sqrt{\frac{\pi}{2}}.$$

Soit $f: \mathbf{R} \to \mathbf{C}$ une fonction continue par morceaux et intégrable. On pose

$$\widehat{f}(x) = \int_{-\infty}^{+\infty} f(t)e^{-ixt} dt$$
 pour tout $x \in \mathbf{R}$.

3. Montrer que la fonction \hat{f} est bien définie, et continue sur \mathbf{R} .

II Etude de la dérivabilité de R en 0

Dans cette partie, on considère une fonction $f: \mathbf{R} \to \mathbf{C}$, continue et telle qu'il existe un réel C > 0 tel que

$$|f(t)| \le \frac{C}{t^2 + 1}$$
 pour tout $t \in \mathbf{R}$.

On pose

$$S(h) = h \sum_{n=0}^{\infty} f(nh)$$
 pour tout $h > 0$.

4. Justifier l'existence de S(h) pour tout h > 0.

On fixe h > 0, et on considère la fonction

$$\phi_h : \mathbf{R}_+ \longrightarrow \mathbf{C}$$

$$t \longmapsto f\left(\left\lfloor \frac{t}{h} \right\rfloor h\right).$$

5. Montrer que

$$S(h) = \int_0^{+\infty} \phi_h(t) \, dt.$$

6. Montrer que, pour tous $h \in]0,1]$ et $t \in [1,+\infty[$, on a

$$|\phi_h(t)| \le \frac{C}{1 + (t-1)^2}$$
.

7. En déduire que

$$S(h) \to \int_0^{+\infty} f(t) dt$$
 quand $h \to 0$.

8. En déduire un équivalent de R(x) quand x tend vers 0 par valeurs strictement positives. La fonction R est-elle dérivable en 0?

III Formule sommatoire de Poisson

Dans cette partie, on note $C_{2\pi}$ l'espace vectoriel des fonctions continues et 2π -périodiques de \mathbf{R} vers \mathbf{C} . Si u est un élément de $C_{2\pi}$, on pose

$$c_p(u) = \frac{1}{2\pi} \int_0^{2\pi} u(t)e^{-ipt} dt$$
 pour tout $p \in \mathbf{Z}$.

On admet le résultat suivant, que l'on pourra utiliser sans démonstration dans toute cette partie : si u et v sont deux éléments de $C_{2\pi}$ qui vérifient $c_p(u) = c_p(v)$ pour tout $p \in \mathbf{Z}$, alors u = v.

On considère une fonction $f: \mathbf{R} \to \mathbf{C}$, continue et telle qu'il existe des réels strictement positifs C_1 et C_2 tels que

$$|f(t)| \le \frac{C_1}{t^2 + 1}$$
 pour tout $t \in \mathbf{R}$ et $|\widehat{f}(x)| \le \frac{C_2}{x^2 + 1}$ pour tout $x \in \mathbf{R}$,

où la fonction \widehat{f} a été définie à la question 3. On pose également

$$F(x) = \sum_{n \in \mathbf{Z}} f(x + 2n\pi) \text{ et } G(x) = \sum_{n \in \mathbf{Z}} \widehat{f}(n) e^{inx} \text{ pour } x \in \mathbf{R}.$$

- 9. Montrer que la fonction F est bien définie, 2π -périodique et continue sur \mathbf{R} .
- 10. Montrer que la fonction G est bien définie, 2π -périodique et continue sur \mathbf{R} .
- 11. Montrer que $G = 2\pi F$.

En particulier, on a $G(0) = 2\pi F(0)$, soit :

$$\sum_{n \in \mathbf{Z}} \widehat{f}(n) = 2\pi \sum_{n \in \mathbf{Z}} f(2n\pi),$$

12. Montrer que, pour tout réel strictement positif a, on a

$$\sum_{n \in \mathbf{Z}} f(na) = \frac{1}{a} \sum_{n \in \mathbf{Z}} \widehat{f}\left(\frac{2n\pi}{a}\right).$$

Cette égalité constitue la formule sommatoire de Poisson.

IV Etude de la dérivabilité de R en π

On considère la fonction $f: \mathbf{R} \to \mathbf{C}$ définie par

$$f(t) = \begin{cases} \frac{e^{it^2} - 1}{t^2} & \text{si } t \neq 0 \\ i & \text{si } t = 0. \end{cases}$$

- 13. Montrer que f est de classe C^{∞} sur \mathbf{R} . On pourra utiliser un développement en série entière.
- 14. Etablir que $f'(t) \to 0$ quand $t \to \pm \infty$, et que $f''(t) = -4e^{it^2} + O(t^{-2})$ quand $t \to \pm \infty$.
- 15. Montrer que l'intégrale $I = \int_{-\infty}^{+\infty} e^{ix^2} dx$ est convergente.
- 16. Montrer que $\hat{f}(x) = O(x^{-2})$ quand $x \to \pm \infty$.

On pose à présent

$$F(x) = \sum_{n=1}^{\infty} \frac{e^{in^2x}}{n^2}$$
 pour $x \in \mathbf{R}$.

17. En utilisant la formule sommatoire de Poisson, montrer qu'il existe des nombres complexes a et b tels que

$$F(x) = F(0) + a\sqrt{x} + bx + O(x^{3/2})$$
 quand $x \to 0$ par valeurs strictement pos

Préciser la valeur de b, et exprimer a en fonction de I (l'intégrale I a été définie à la question 15).

- 18. Exprimer, pour $x \in \mathbf{R}$, $F(\pi + x)$ en fonction de F(4x) et de F(x).
- 19. Déduire de ce qui précède que la fonction R est dérivable en π , et préciser la valeur de $R'(\pi)$.

FIN DU PROBLÈME