

Mathématiques 2

2018

PC

CONCOURS CENTRALE•SUPÉLEC

4 heures

Calculatrices autorisées

Objectifs et notations

Le fil conducteur du problème est l'étude de certaines questions liées à la fonction zêta, notée ζ , définie par

$$\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$$

- Dans la partie I, on introduit la fonction ζ et on étudie son allure (variations, limites, courbe représentative).
- La partie II étudie une fonction f définie comme la somme d'une série de fonctions. Le développement en série entière de la fonction f fait intervenir la fonction ζ .
- La partie III utilise la fonction ζ pour construire une loi de probabilité sur \mathbb{N}^* et montrer des résultats liant les probabilités et l'arithmétique.

I Fonction zêta

On note ζ la fonction de la variable réelle x définie par

$$\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$$

On note \mathcal{D}_{ζ} son ensemble de définition.

- **Q 1.** Déterminer \mathcal{D}_{ζ} .
- **Q 2.** Montrer que ζ est continue sur \mathcal{D}_{ζ} .
- **Q 3.** Étudier le sens de variation de ζ .
- **Q 4.** Justifier que ζ admet une limite en $+\infty$.

Q 5. Soit
$$x \in \mathcal{D}_{\zeta}$$
 et soit $n \in \mathbb{N}$ tel que $n \geqslant 2$. Montrer : $\int_{n}^{n+1} \frac{\mathrm{d}t}{t^{x}} \leqslant \frac{1}{n^{x}} \leqslant \int_{n-1}^{n} \frac{\mathrm{d}t}{t^{x}}$.

Q 6. En déduire, que pour tout $x \in \mathcal{D}_{\zeta}$,

$$1 + \frac{1}{(x-1)2^{x-1}} \leqslant \zeta(x) \leqslant 1 + \frac{1}{x-1}$$

- **Q 7.** Déterminer la limite de $\zeta(x)$ lorsque x tend vers 1 par valeurs supérieures.
- **Q 8.** Déterminer la limite de $\zeta(x)$ lorsque x tend vers $+\infty$.
- **Q 9.** Donner l'allure de la courbe représentative de ζ .

II Étude d'une fonction définie par une somme

Dans cette partie, f désigne la fonction définie par

$$f(x) = \sum_{n=1}^{+\infty} \left(\frac{1}{n+x} - \frac{1}{n} \right)$$

On note \mathcal{D}_f l'ensemble de définition de f.

II.A - Ensemble de définition et variations

- Q 10. Déterminer \mathcal{D}_f .
- **Q 11.** Montrer que f est continue sur \mathcal{D}_f et étudier ses variations.

II.B - Équivalents

Soit $k \in \mathbb{N}^*$.

Q 12. Calculer f(k).

Q 13. En déduire un équivalent de f en $+\infty$.

Q 14. Pour tout $x \in \mathcal{D}_f$, vérifier que $x + k \in \mathcal{D}_f$, puis calculer f(x + k) - f(x).

Q 15. En déduire un équivalent de f en -k. Quelles sont les limites à droite et à gauche de f en -k?

II.C - Série entière

On considère la série entière de la variable réelle x donnée par $\sum_{k\in\mathbb{N}^*}(-1)^k\zeta(k+1)x^k$.

Q 16. Déterminer le rayon de convergence R de cette série entière. Y a-t-il convergence en $x = \pm R$?

Q 17. Montrer que f est de classe \mathcal{C}^{∞} sur \mathcal{D}_f et calculer $f^{(k)}(x)$ pour tout $x \in \mathcal{D}_f$ et tout $k \in \mathbb{N}^*$.

Q 18. Montrer qu'il existe $A \in \mathbb{R}_+^*$ tel que

$$\forall k \in \mathbb{N}^*, \forall x \in \left]-1,1\right[, \quad \left|f^{(k)}(x)\right| \leqslant k! \left(A + \frac{1}{(x+1)^{k+1}}\right)$$

Q 19. En déduire que f est développable en série entière sur]-1,1[et que

$$\forall x \in]-1, 1[, \quad f(x) = \sum_{k=1}^{+\infty} (-1)^k \zeta(k+1) x^k$$

II.D - Intégrales

Q 20. Déterminer pour quels $x \in \mathbb{R}$ l'intégrale ci-dessous est convergente

$$\int_{0}^{1} \frac{t^{x} - 1}{1 - t} \, \mathrm{d}t$$

Q 21. En remarquant que, pour tout $t \in [0,1[,\frac{1}{1-t}=\sum_{n=0}^{\infty}t^n,$ montrer que

$$\forall x \in]-1, +\infty[, \quad f(x) = \int_{0}^{1} \frac{t^{x} - 1}{1 - t} dt$$

Q 22. Déduire des questions précédentes une expression intégrale de $\zeta(k+1)$ pour tout $k \in \mathbb{N}^*$.

Q 23. Montrer enfin que

$$\forall k \in \mathbb{N}^*, \quad \zeta(k+1) = \frac{1}{k!} \int_{0}^{+\infty} \frac{u^k}{e^u - 1} du$$

III Probabilités

Rappels d'arithmétique

On rappelle ici quelques propriétés élémentaires d'arithmétique.

— Pour tout $(a,b) \in \mathbb{N}^{*2}$, on dit que a divise b s'il existe $k \in \mathbb{N}^*$ tel que b = ka. On dit aussi que a est un diviseur de b, ou encore que b est multiple de a.

Pour tout $a \in \mathbb{N}^*$, on note $a\mathbb{N}^*$ l'ensemble des multiples de a dans \mathbb{N}^* . Ainsi, a divise b si et seulement si $b \in a\mathbb{N}^*$.

— Pour tout $(a, b) \in \mathbb{N}^{*2}$, le plus grand commun diviseur (PGCD) de a et b est l'entier naturel noté $a \wedge b$ tel que

 $a \wedge b = \max \{ n \in \mathbb{N}^* \text{ tel que } n \text{ divise } a \text{ et } n \text{ divise } b \}$

— Pour tout $(a,b) \in \mathbb{N}^{*2}$ et tout $n \in \mathbb{N}^*$, on a l'équivalence

$$n$$
 divise $a \wedge b \iff n$ divise a et n divise b

— On dit qu'un entier naturel p supérieur ou égal à 2 est un nombre premier si ses seuls diviseurs sont 1 et p. Soit \mathcal{P} l'ensemble des nombres premiers. On rappelle que \mathcal{P} est infini.

On note $p_1 < p_2 < p_3 < \cdots < p_n < p_{n+1} < \cdots$ la suite des nombres premiers rangés dans l'ordre croissant. Ainsi, $p_1 = 2, p_2 = 3, p_3 = 5$, etc.

— Si $n \in \mathbb{N}^*$, si $q_1, ..., q_n$ sont des nombres premiers distincts et, alors pour tout $a \in \mathbb{N}^*$, on a l'équivalence

$$\left(\forall i \in [\![1,n]\!], \quad q_i \text{ divise } a\right) \iff \prod_{i=1}^n q_i \text{ divise } a$$

— Pour tout $a \in \mathbb{N}^*$ tel que $a \ge 2$, il existe $p \in \mathcal{P}$ tel que p divise a.

III.A - Loi zêta

Q 24. Soit $x \in \mathbb{R}$ tel que x > 1. Montrer qu'on définit la loi de probabilité d'une variable aléatoire X à valeurs dans \mathbb{N}^* en posant

$$\forall n \in \mathbb{N}^*, \quad \mathbb{P}(X = n) = \frac{1}{\zeta(x)n^x}$$

On dira qu'une telle variable aléatoire X suit la loi de probabilité zêta de paramètre x.

Dans les questions suivantes de cette sous-partie III.A, on suppose que X est une variable aléatoire qui suit la loi zêta de paramètre x > 1.

Q 25. Donner une condition nécessaire et suffisante portant sur x pour que X admette une espérance finie. Exprimer alors cette espérance à l'aide de ζ .

Q 26. Plus généralement, pour tout $k \in \mathbb{N}$, donner une condition nécessaire et suffisante portant sur x pour que X^k admette une espérance finie. Exprimer alors cette espérance à l'aide de ζ .

 \mathbf{Q} 27. En déduire la variance de X.

Q 28. Montrer que, pour tout $a \in \mathbb{N}^*$, $\mathbb{P}(X \in a\mathbb{N}^*) = \frac{1}{a^x}$.

III.B - Mutuelle indépendance

Soit x un réel tel que x > 1 et soit X une variable aléatoire qui suit la loi zêta de paramètre x.

Soit enfin $(q_1,...,q_n) \in \mathcal{P}^n$, un *n*-uplet de nombres premiers distincts.

Q 29. Montrer que les événements $(X \in q_1 \mathbb{N}^*), ..., (X \in q_n \mathbb{N}^*)$ sont mutuellement indépendants.

Cela entraine, et on ne demande pas de le démontrer, que leurs complémentaires sont mutuellement indépendants.

Pour tout $n \in \mathbb{N}^*$, on note B_n l'événement $B_n = \bigcap_{k=1}^n (X \notin p_k \mathbb{N}^*)$.

Q 30. Montrer que $\lim_{n\to\infty} \mathbb{P}(B_n) = \mathbb{P}(X=1)$. En déduire que

$$\forall x \in]1, +\infty[, \quad \frac{1}{\zeta(x)} = \lim_{n \to +\infty} \prod_{k=1}^{n} \left(1 - \frac{1}{p_k^x}\right)$$

III.C - Deux variables indépendantes suivant une loi zêta

Soit $x \in \mathbb{R}$ tel que x > 1. Soient X et Y deux variables aléatoires indépendantes suivant chacune une loi de probabilité zêta de paramètre x. Soit A l'événement « Aucun nombre premier ne divise X et Y simultanément ». Pour tout $n \in \mathbb{N}^*$, on note C_n l'événement

$$C_n = \bigcap_{k=1}^n \bigl((X \not\in p_k \mathbb{N}^*) \cup (Y \not\in p_k \mathbb{N}^*) \bigr)$$

Q 31. Exprimer l'événement A à l'aide des événements C_n . En déduire que

$$\mathbb{P}(A) = \frac{1}{\zeta(2x)}$$

III.D - Deux variables indépendantes suivant une loi uniforme

Soient U_n et V_n deux variables aléatoires indépendantes suivant la loi uniforme sur [1, n]. On note $W_n = U_n \wedge V_n$. Q 32. Pour tout $k \in \mathbb{N}^*$, montrer que

$$\mathbb{P}(W_n \in k \mathbb{N}^*) = \left(\frac{\lfloor n/k \rfloor}{n}\right)^2$$

On admet que, pour tout $k \in \mathbb{N}^*$, la suite $(\mathbb{P}(W_n = k))_{n \in \mathbb{N}^*}$ converge vers un réel ℓ_k .

Q 33. Montrer que

$$\forall \varepsilon>0, \quad \exists M\in \mathbb{N}^* \text{ tel que } \forall m\in \mathbb{N}^*, \ m\geqslant M \implies 1-\varepsilon\leqslant \sum_{k=1}^m \ell_k\leqslant 1$$

Q 34. En déduire que $(\ell_k)_{k\in\mathbb{N}^*}$ définit une loi de probabilité sur \mathbb{N}^* .

On note W une variable aléatoire sur \mathbb{N}^* qui suit cette loi de probabilité. En adaptant la méthode de la question 33, on peut établir que, pour tout partie B de \mathbb{N}^* , $\mathbb{P}(W \in B) = \lim_{n \to \infty} \mathbb{P}(W_n \in B)$. On ne demande pas de démontrer ce résultat.

Enfin, on admet le résultat suivant : si X et Y sont deux variables aléatoires à valeurs dans \mathbb{N}^* et si, pour tout $a \in \mathbb{N}^*$, $\mathbb{P}(X \in a\mathbb{N}^*) = \mathbb{P}(Y \in a\mathbb{N}^*)$, alors X et Y ont la même loi de probabilité.

Q 35. Préciser la loi de W. En considérant ℓ_1 , que peut-on alors en conclure?

