ÉCOLE POLYTECHNIQUE – ÉCOLES NORMALES SUPÉRIEURES

CONCOURS D'ADMISSION 2016

FILIÈRE MP

COMPOSITION DE MATHÉMATIQUES – A – (XLCR)

(Durée: 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

* * *

Toute affirmation doit être clairement et complètement justifiée.

Soit $n \geq 1$ un entier. On appelle point entier de \mathbb{R}^n un point dont toutes les coordonnées sont entières, c'est-à-dire un point de \mathbb{Z}^n . Si \mathcal{K} est une partie de \mathbb{R}^n , on note $\mathring{\mathcal{K}}$ son intérieur. On appelle points entiers de \mathcal{K} (resp. points entiers intérieurs) les points de $\mathcal{K} \cap \mathbb{Z}^n$ (resp. les points de $\mathring{\mathcal{K}} \cap \mathbb{Z}^n$). On note respectivement $\operatorname{Card}(\mathcal{K} \cap \mathbb{Z}^n)$ et $\operatorname{Card}(\mathring{\mathcal{K}} \cap \mathbb{Z}^n)$, le nombre (éventuellement infini) de points entiers de \mathcal{K} et de son intérieur $\mathring{\mathcal{K}}$.

Soit h_{β} l'homothétie de rapport $\beta \in \mathbb{R}$ (centrée en 0), on note $\beta \mathcal{K} = h_{\beta}(\mathcal{K})$ l'image de \mathcal{K} par h_{β} . Si τ_x est la translation de vecteur $x \in \mathbb{R}^n$, on note $\mathcal{K} - x = \tau_{-x}(\mathcal{K})$ l'image de \mathcal{K} par τ_{-x} .

Si $M = (m_{ij})$ est une matrice de $M_n(\mathbb{R})$, m_{ij} est le coefficient de la *i*-ème ligne et de la *j*-ème colonne.

On note $(x_1|\cdots|x_n)$ la matrice de $M_n(\mathbb{R})$ dont les colonnes sont les vecteurs $x_1,\ldots,x_n\in\mathbb{R}^n$. On note I_n la matrice identité de $M_n(\mathbb{R})$ et E_{ij} la matrice de $M_n(\mathbb{R})$ dont tous les coefficients sont nuls sauf celui de la i-ème ligne et j-ème colonne qui vaut 1.

On note $M_n(\mathbb{Z})$ l'ensemble des matrices de $M_n(\mathbb{R})$ dont tous les coefficients sont entiers.

On note $\lfloor a \rfloor$ la partie entière d'un réel a: c'est le plus grand entier inférieur ou égal à a; et $\{a\} = a - \lfloor a \rfloor \in [0,1[$ la partie fractionnaire de a. On note $\rfloor a \rfloor$ le plus grand entier strictement inférieur à a.

On rappelle que des entiers a_1, \ldots, a_k non tous nuls sont dits premiers entre eux dans leur ensemble si $\operatorname{pgcd}(a_1, \ldots, a_k) = 1$.

Première partie

- 1. Soit $M \in M_n(\mathbb{R})$ une matrice inversible et à coefficients entiers.
- 1a. Montrer que M^{-1} est à coefficients rationnels.
- 1b. Montrer l'équivalence des propositions suivantes :
 - i) M^{-1} est à coefficients entiers.
 - ii) $\det M$ vaut 1 ou -1.

Dans la suite, on note $GL_n(\mathbb{Z})$ l'ensemble des matrices carrées de taille n à coefficients entiers et de déterminant ± 1 . C'est un sous-groupe de $GL_n(\mathbb{R})$. On remarque que pour $i \neq j$ et $c \in \mathbb{Z}$, la matrice $I_n + cE_{ij}$ appartient à $GL_n(\mathbb{Z})$.

2. Soit $M = (x_1 | \cdots | x_n) \in GL_n(\mathbb{R})$.

- **2a.** Montrer que $M \in GL_n(\mathbb{Z})$ si et seulement si $M(\mathbb{Z}^n) = \mathbb{Z}^n$.
- 2b. Montrer l'équivalence des propositions suivantes :
 - i) $M \in \mathrm{GL}_n(\mathbb{Z})$.
 - ii) Les points entiers du parallélépipède $\mathcal{P} = \left\{ \sum_{i=1}^n t_i x_i \mid \forall i \in \{1,\dots,n\}, \ t_i \in [0,1] \right\}$ sont exactement les 2^n points $\sum_{i=1}^n \varepsilon_i x_i$, où $\varepsilon_i \in \{0,1\}$ pour tout $i \in \{1,\dots,n\}$.
- 3. Pour tout α dans \mathbb{R} et pour tous entiers i et j distincts compris entre 1 et n, décrire l'effet sur une matrice carrée M de taille n de la multiplication à gauche par $I_n + \alpha E_{ij}$. Même question pour la multiplication à droite.
- **4.** Soient a_1, \ldots, a_n des entiers non tous nuls. Le but de cette question est de montrer qu'il existe une matrice de $M_n(\mathbb{Z})$ dont la première colonne est (a_1, \ldots, a_n) et de déterminant $\operatorname{pgcd}(a_1, \ldots, a_n)$. Pour cela on raisonne par récurrence sur n.

Soit $N \in M_{n-1}(\mathbb{Z})$ une matrice dont la première colonne est (a_2, \ldots, a_n) . Étant donnés $u, v \in \mathbb{Q}$, on considère la matrice

$$M = \begin{pmatrix} a_1 & 0 & \cdots & 0 & u \\ & & & & va_2 \\ & N & & \vdots \\ & & & va_n \end{pmatrix}.$$

- **4a.** Exprimer $\det M$ en fonction $\det N$, u et v.
- **4b.** On suppose que les a_2, \ldots, a_n sont non tous nuls et que det $N = \operatorname{pgcd}(a_2, \ldots, a_n)$. Montrer que l'on peut choisir u, v de sorte que M réponde à la question. Conclure.
- 5. Soit $M \in M_n(\mathbb{Z})$, de déterminant non nul. On souhaite montrer qu'il existe une matrice A dans $\operatorname{GL}_n(\mathbb{Z})$ telle que MA soit triangulaire supérieure et en notant $MA = (c_{ij})$, on ait l'inégalité $0 \leq c_{ij} < c_{ii}$ pour tous $i, j \in \{1, \ldots, n\}$ tels que i < j.
- **5a.** On note $M=(x_1|\cdots|x_n)$. Soient x_1,\ldots,x_n' les éléments de \mathbb{Z}^{n-1} obtenus en prenant les (n-1) dernières coordonnées de x_1,\ldots,x_n .

Montrer qu'il existe a_1, \ldots, a_n dans \mathbb{Q} , non tous nuls, tels que $\sum_{i=1}^n a_i x_i' = 0$. Montrer que l'on peut choisir les a_i entiers et premiers entre eux dans leur ensemble.

- **5b.** Montrer qu'il existe une matrice A_1 dans $\operatorname{GL}_n(\mathbb{Z})$ telle que la première colonne de $\tilde{C} = MA_1$ ait tout ses coefficients \tilde{c}_{i1} nuls sauf le premier \tilde{c}_{11} que l'on peut prendre strictement positif.
- **5c.** En considérant pour tout $j=2,\ldots,n$ la division euclidienne $\tilde{c}_{1j}=q_j\tilde{c}_{11}+r_j,\ 0\leqslant r_j<\tilde{c}_{11},$ montrer que l'on peut supposer $\tilde{c}_{11}>\tilde{c}_{1j},$ quitte à changer A_1 .
- 5d. Conclure par récurrence.
- **6.** Soit $M \in M_n(\mathbb{Z})$, de déterminant non nul. Montrer qu'il existe une matrice A dans $\mathrm{GL}_n(\mathbb{Z})$ telle que AM soit triangulaire inférieure et en notant $AM = (c_{ij})$, on ait l'inégalité $0 \leq c_{ij} < c_{ii}$ pour tous $i, j \in \{1, \ldots, n\}$ tels que j < i.

Deuxième partie

Soient s_0, s_1, \ldots, s_n des points de \mathbb{R}^n tels que les vecteurs $s_1 - s_0, s_2 - s_0, \ldots, s_n - s_0$ soient linéairement indépendants. On appelle simplexe de sommets s_0, s_1, \ldots, s_n l'ensemble :

$$S = \left\{ \sum_{i=0}^{n} t_i s_i \mid \forall i = 1, \dots, n, \ t_i \ge 0, \ \sum_{i=0}^{n} t_i = 1 \right\}$$
$$= \left\{ s_0 + \sum_{i=1}^{n} t_i (s_i - s_0) \mid \forall i = 1, \dots, n, \ t_i \ge 0, \ \sum_{i=1}^{n} t_i \le 1 \right\}.$$

Si de plus les s_i sont tous des points entiers, on dit que S est un simplexe entier. On définit le volume du simplexe S de sommets s_0, s_1, \ldots, s_n par

$$Vol(S) := \frac{1}{n!} |\det(s_1 - s_0, s_2 - s_0, \dots, s_n - s_0)|.$$

- 7. Soit S le simplexe de sommets s_0, s_1, \ldots, s_n .
- 7a. Montrer S est un compact convexe de \mathbb{R}^n .

7b. Montrer que
$$\mathring{S} = \left\{ \sum_{i=0}^{n} t_i s_i \mid \forall i = 1, ..., n, \ t_i > 0, \ \sum_{i=0}^{n} t_i = 1 \right\}.$$

En déduire que si $0 \in \mathring{\mathcal{S}}$, alors, pour tout $\lambda \in [0, 1[, \lambda \mathcal{S} \subset \mathring{\mathcal{S}}, \mathcal{S}])$

- 7c. Pour $i=0,\ldots,n$, on note $\hat{s}_i=(1,s_i)$ le point de \mathbb{R}^{n+1} dont les coordonnées sont 1 suivi des coordonnées de s_i . Exprimer $|\det(\hat{s}_0,\hat{s}_1,\ldots,\hat{s}_n)|$ en fonction de $\operatorname{Vol}(\mathcal{S})$. En déduire que le volume d'un simplexe ne dépend pas de l'ordre des sommets.
- 8. Soit $V \ge 0$ un réel.
- 8a. Donner un exemple de simplexe entier de \mathbb{R}^2 , de volume supérieur ou égal à V, et n'ayant aucun point intérieur entier.
- 8b. Donner un exemple de simplexe entier de \mathbb{R}^3 , de volume supérieur ou égal à V, et dont les seuls points entiers sont les sommets.
- 9. Soit \mathcal{K} un compact convexe de \mathbb{R}^n tel que $0 \in \mathcal{K}$.
- **9a.** Montrer que l'ensemble des $\lambda \ge 0$ tels que $-\lambda \mathcal{K} \subset \mathcal{K}$ est un intervalle.

On note

$$a(\mathcal{K}) = \sup\{\lambda \geqslant 0 \mid -\lambda \mathcal{K} \subset \mathcal{K}\}.$$

- **9b.** Montrer que $a(\mathcal{K}) < \infty$ et que $a(\mathcal{K}) = \max\{\lambda > 0 \mid -\lambda \mathcal{K} \subset \mathcal{K}\}.$
- **9c.** Montrer que $0 < a(\mathcal{K}) \leq 1$.

En déduire que $a(\mathcal{K}) = 1$ si et seulement si \mathcal{K} est symétrique par rapport à 0.

On admettra le résultat suivant que l'on pourra utiliser sans démonstration pour la suite du problème.

Théorème 1. Soit S un simplexe de \mathbb{R}^n et k un entier. Si $Vol(S) \ge k$, il existe k+1 points distincts v_0, \ldots, v_k de S tels que $v_i - v_j \in \mathbb{Z}^n$ quels que soient i et j entre 0 et k.

10. Dans toute cette question, S est un simplexe de \mathbb{R}^n tel que $0 \in \mathring{S}$. On veut montrer que

$$\operatorname{Card}(\mathring{\mathcal{S}} \cap \mathbb{Z}^n) \geqslant 2 \left| \operatorname{Vol}(\mathcal{S}) \left(\frac{a(\mathcal{S})}{a(\mathcal{S}) + 1} \right)^n \right| + 1.$$
So et $k = \left| \operatorname{Vol}(\mathcal{S}) \left(\frac{a}{a} \right)^n \right|$

On pose alors a = a(S), et $k = \left| \operatorname{Vol}(S) \left(\frac{a}{a+1} \right)^n \right|$.

10a. Exprimer, pour $\beta \in \mathbb{R}$ et $x \in \mathbb{R}^n$, $\operatorname{Vol}(\beta S)$ et $\operatorname{Vol}(S - x)$. Montrer que pour $\lambda \in [0,1]$ suffisamment proche de 1, $\operatorname{Vol}\left(\frac{\lambda a}{a+1}S\right) > k$.

10b. Soient v_0, \ldots, v_k les k+1 points distincts dans $\frac{\lambda a}{a+1} \mathcal{S}$ vérifiant $v_i - v_j \in \mathbb{Z}^n$ pour tous i, j, dont l'existence est assurée par le Théorème 1. Montrer que les points $\frac{(v_i - v_j)a}{a+1}$ sont dans $\frac{\lambda a}{a+1} \mathcal{S}$. En déduire que les $v_i - v_j$ sont dans $\mathring{\mathcal{S}}$.

10c. Montrer qu'il existe un indice $j \in \{0, ..., k\}$ tels que les (2k+1) points $0, \pm (v_i - v_j)$, pour $i \in \{0, ..., k\} \setminus \{j\}$ soient distincts. En déduire l'énoncé de la question **10**, puis que

$$\operatorname{Card}(\mathring{\mathcal{S}} \cap \mathbb{Z}^n) \geqslant \operatorname{Vol}(\mathcal{S}) \left(\frac{a(\mathcal{S})}{2} \right)^n.$$

Troisième partie

On dit que deux simplexes S et S' de \mathbb{R}^n sont équivalents s'il existe un ordre d'énumération des sommets s_0, s_1, \ldots, s_n de S, et s'_0, s'_1, \ldots, s'_n de S', et une matrice A de $\operatorname{GL}_n(\mathbb{Z})$ tels que $A(s_i - s_0) = s'_i - s'_0$ pour tout $i = 1, \ldots, n$.

- 11. Montrer que deux simplexes entiers S et S' sont équivalents si et seulement s'il existe une matrice $A \in GL_n(\mathbb{Z})$ et un vecteur $b \in \mathbb{Z}^n$ tels que S' = A(S) b.
- 12. Montrer que le volume, le nombre de points entiers et le nombre de points intérieurs entiers sont les mêmes pour deux simplexes entiers équivalents.
- 13. Soit S un simplexe entier. Montrer qu'il existe des entiers $c_i > 0$ pour $i = 1, \ldots, n$, et un simplexe S' équivalent à S, tels que $S' \subset \prod_{i=1}^n [0, c_i]$ et que

$$\prod_{i=1}^{n} c_i = n! \operatorname{Vol}(\mathcal{S}).$$

On pourra utiliser la question 6 pour une matrice M bien choisie.

14. Montrer qu'un simplexe entier S est équivalent à un simplexe contenu dans le cube $[0, n! \operatorname{Vol}(S)]^n$.

On admet le résultat suivant que l'on pourra utiliser sans démonstration.

Théorème 2. Pour tout entier strictement positif k, il existe une constante strictement positive C(n,k) telle que pour tout simplexe entier S de \mathbb{R}^n possédant exactement k points intérieurs entiers, $\operatorname{Vol}(S) \leqslant C(n,k)$.

15. Déduire du Théorème 2 que pour tout entier strictement positif k, il n'existe à équivalence près qu'un nombre fini de simplexes entiers de \mathbb{R}^n ayant exactement k points intérieurs.

* *