

EPREUVE SPECIFIQUE - FILIERE PSI

MATHEMATIQUES 1

Durée: 4 heures

Les calculatrices sont autorisées.

N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Le sujet comporte 6 pages.

Notations:

On note:

• R : l'ensemble des nombres réels,

• ln : la fonction logarithme népérien.

Pour tout nombre réel x tel que la série $\sum_{n\geq 1} \frac{\left(-1\right)^{n+1}}{n^x}$ converge (resp. la série $\sum_{n\geq 0} \ln\left(1+e^{-nx}\right)$ converge), on note $\theta(x) = \sum_{n=1}^{+\infty} \frac{\left(-1\right)^{n+1}}{n^x}$ (resp $f(x) = \sum_{n=0}^{+\infty} \ln\left(1+e^{-nx}\right)$) la somme de cette série.

Objectifs:

On se propose d'étudier quelques propriétés des fonctions θ et f.

Dans la partie I, on calcule trois valeurs exactes et une valeur approchée de $\theta(n)$ pour quatre entiers naturels n. La partie II est consacrée à une étude de la fonction f en liaison avec $\theta(2)$. Dans la partie III, on étudie de façon plus précise la continuité et le caractère C^1 de la fonction θ .

PARTIE I

Quelques valeurs de la fonction θ

- I.1/ Calcul de $\theta(1)$.
 - I.1.1/ Préciser, selon la valeur du nombre réel x, la limite de $\frac{1}{n^x}$ lorsque l'entier n tend vers $+\infty$.
 - **I.1.2**/ Montrer que l'ensemble de définition de la fonction θ est $E = [0; +\infty]$.
 - I.1.3/ Pour tout entier naturel n, on pose $J_n = \int_0^{\frac{\pi}{4}} (\tan t)^n dt$.
 - **I.1.3.1**/ Préciser une primitive de la fonction $t \mapsto \tan t$ et calculer J_1 .
 - I.1.3.2/ Montrer que la suite J_n est convergente et préciser sa limite.
 - **I.1.3.3**/ Calculer $J_n + J_{n+2}$ pour tout entier naturel n.
 - **I.1.3.4**/ En utilisant le résultat obtenu en I.1.3.3/, établir (par exemple par récurrence), pour tout entier naturel n non nul, la relation : $\sum_{k=1}^{n} \frac{\left(-1\right)^{k+1}}{2k} = J_1 + \left(-1\right)^{n+1} J_{2n+1}.$
 - **I.1.3.5**/ En déduire la valeur de $\theta(1)$.
- I.2/ Une valeur approchée de $\theta(3)$.

Pour tout entier naturel *n* non nul, on pose $S_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k^3}$.

- **I.2.1**/ Décrire, en français, un algorithme de calcul de S_n pour n entier naturel non nul donné.
- **I.2.2**/ En utilisant l'algorithme précédent et la calculatrice, donner la valeur décimale approchée par défaut σ de S_{30} à la précision 10^{-4} .
- **I.2.3**/ Montrer que σ est aussi la valeur décimale approchée par défaut de $\theta(3)$ à la précision 10^{-4} .

I.3/ Calcul de $\theta(2)$ et $\theta(4)$.

On considère la fonction g définie sur \mathbb{R} , à valeurs réelles, 2π -périodique et vérifiant :

$$g(x)=x^2$$
 pour tout $x \in]-\pi$; π].

Pour tout entier naturel n, on pose $\alpha_n = \int_0^{\pi} x^2 \cos(nx) dx$.

- **I.3.1**/ Calculer α_n pour tout entier naturel n.
- **I.3.2**/ Expliciter les coefficients de Fourier réels $a_n(g)$ et $b_n(g)$ de la fonction g. On rappelle que pour tout entier naturel n:

$$a_n(g) = \frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \cos(nx) dx$$
 et $b_n(g) = \frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \sin(nx) dx$.

- **I.3.3**/ Justifier la convergence, pour tout x réel, de la série $\sum_{n\geq 1} \frac{(-1)^n}{n^2} \cos(nx)$ et expliciter sa somme $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} \cos(nx)$ pour tout $x \in]-\pi$; π].
- **I.3.4**/ En déduire la valeur de $\theta(2)$.
- **I.3.5**/ Justifier la convergence de la série $\sum_{n\geq 1} \frac{1}{n^4}$ et calculer la valeur de sa somme $\sum_{n=1}^{+\infty} \frac{1}{n^4}$.
- **I.3.6**/ En utilisant le résultat obtenu en I.3.3/, établir la convergence de la série $\sum_{n\geq 1} \frac{\left(-1\right)^n}{n^3} \sin\left(nx\right) \text{ et expliciter sa somme } \sum_{n=1}^{+\infty} \frac{\left(-1\right)^n}{n^3} \sin\left(nx\right) \text{ pour } x \in \left]-\pi \ ; \ \pi\right].$
- **I.3.7**/ Justifier, pour tout x réel, la convergence de la série $\sum_{n\geq 1} \frac{\left(-1\right)^n}{n^4} \cos\left(nx\right)$ et calculer sa somme $\sum_{n=1}^{+\infty} \frac{\left(-1\right)^n}{n^4} \cos\left(nx\right)$ pour $x \in]-\pi$; $\pi]$ en fonction de x et $\theta(4)$.
- **I.3.8**/ En déduire la valeur de $\theta(4)$.

PARTIE II

Etude d'une fonction

Pour tout entier naturel n et tout nombre réel x, on note $u_n(x) = \ln(1 + e^{-nx})$.

Pour tout nombre réel x tel que la série $\sum_{n\geq 0} u_n(x)$ converge, on note $f(x) = \sum_{n=0}^{+\infty} u_n(x)$ la somme de cette série. On se propose d'étudier quelques propriétés de la fonction f en utilisant en particulier $\theta(2) = \sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{n^2}$.

- II.1/ Montrer que la fonction f est définie sur $]0;+\infty[$.
- On note désormais $\begin{picture}(6,0) \put(0,0){\line(0,0){10}} \put(0,0){\line$
- II.2/ Montrer que la fonction f est continue sur $]0;+\infty[$.
- II.3/ Montrer que la fonction f est strictement monotone sur $]0;+\infty[$.
- II.4/ Justifier l'affirmation : \mathcal{E} est un intervalle de \mathbb{R} .
- II.5/ Montrer que la fonction f admet une limite finie λ (que l'on précisera) en $+\infty$.
- II.6/ Pour tout nombre réel x strictement positif, on désigne par ψ_x la fonction définie sur \mathbb{R}_+ par : $\psi_x(t) = \ln(1 + e^{-tx})$.
 - II.6.1/ Justifier la convergence de l'intégrale $\int_{0}^{+\infty} \psi_{x}(t) dt$.
 - II.6.2/ Etablir, pour tout nombre réel x>0, la double inégalité :

$$\int_{0}^{+\infty} \psi_{x}(t) dt \leq f(x) \leq \ln 2 + \int_{0}^{+\infty} \psi_{x}(t) dt.$$

II.6.3/ Montrer l'existence de l'intégrale $\int_0^1 \frac{\ln(1+y)}{y} dy$ et exprimer sa valeur en fonction de $\theta(2)$.

II.6.4/ Montrer qu'il existe une constante μ (que l'on précisera) telle que pour tout nombre réel x strictement positif, on ait la double inégalité :

$$\frac{\mu}{x} \le f(x) \le \lambda + \frac{\mu}{x}.$$

II.6.5/ En déduire la limite de xf(x) lorsque x tend vers 0 et préciser l'intervalle \mathcal{E} .

PARTIE III

Propriétés de la fonction θ

Rappel:
$$\theta(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^x}$$
.

III.1/ Montrer que pour tout nombre réel x de E =]0; $+\infty[$, on a la double inégalité $1 - \frac{1}{2^x} \le \theta(x) \le 1$.

III.2/ En déduire que la fonction θ est bornée sur E et qu'elle admet une limite finie en $+\infty$; on précisera cette limite.

III.3/ Continuité de la fonction θ .

- III.3.1/ En utilisant la notion de convergence normale, montrer que la fonction θ est continue sur l'intervalle $[1,+\infty]$.
- III.3.2/ Montrer que la fonction θ est continue sur E.

III.4/ Caractère C^1 de la fonction θ .

III.4.1/ Soit x un nombre réel fixé strictement positif, on désigne par φ_x la fonction définie sur l'intervalle $[2;+\infty[$ par $\varphi_x(t)=\frac{\ln(t)}{t^x}.$

Etudier les variations de la fonction φ_x sur l'intervalle [2 ;+ ∞ [; on précisera l'étude dans les deux cas :

III.4.1.1/ lorsque
$$x \ge \frac{1}{\ln 2}$$
.

III.4.1.2/ lorsque
$$x \in \left]0$$
; $\frac{1}{\ln 2} \left[$.

III.4.2/ Démontrer de façon rigoureuse que la fonction θ est de classe C^1

III.4.2.1/ sur l'intervalle
$$\left[\frac{1}{\ln 2}; +\infty\right[$$
,

III.4.2.2/ sur l'intervalle
$$]0;+\infty[$$
.

III.4.3/ Déterminer le signe

III.4.3.1/ de
$$\theta'(2)$$
,

III.4.3.2/ de
$$\theta'(1)$$
.

Fin de l'énoncé.