CONCOURS COMMUN 2005 DES ÉCOLES DES MINES D'ALBI, ALÈS, DOUAI, NANTES

Épreuve de Mathématiques (toutes filières)

Jeudi 19 mai 2005 de 14h00 à 18h00

Instructions générales:

Les candidats doivent vérifier que le sujet comprend 4 pages numérotées 1/4, 2/4, 3/4, 4/4.

Les candidats sont invités à porter une attention particulière à la rédaction : les copies illisibles ou mal présentées seront pénalisées.

Les candidats colleront sur leur première feuille de composition l'étiquette à code à barres correspondante.

L'emploi d'une calculatrice est interdit

PROBLÈME D'ALGÈBRE ET DE GÉOMÉTRIE

Les quatre parties A, B, C, D de ce problème sont totalement indépendantes entre elles.

Dans tout ce problème, on se place dans l'espace usuel muni d'un repère orthonormé direct $\mathcal{R} = \left(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)$. On note \mathcal{E} l'ensemble des points de l'espace et E l'ensemble des vecteurs de l'espace. Les différentes coordonnées et équations qui apparaissent dans l'énoncé sont relatives au repère \mathcal{R} .

Si
$$\overrightarrow{X} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$$
, on pourra aussi noter $\overrightarrow{X} = (x, y, z)$.

Si α, β et δ sont trois réels fixés et si $\overrightarrow{w}, \overrightarrow{v}$ et \overrightarrow{w} sont trois vecteurs fixés de E, on note f l'application linéaire de E dans E définie pour tout vecteur \overrightarrow{X} de E par

$$f\left(\overrightarrow{X}\right) = \alpha\left(\overrightarrow{X}\cdot\overrightarrow{u}\right)\overrightarrow{v} + \beta\overrightarrow{X} + \delta\overrightarrow{X}\wedge\overrightarrow{w}$$

A - Etude de l'intersection de deux plans mobiles et d'un plan fixe

On note D' la droite passant par O dirigée par $\overrightarrow{a} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$, D la droite d'équations $\begin{cases} y = z \\ x = 1 \end{cases}$, Q le plan d'équation y + z = 0 et enfin, pour tout réel m, P_m est le plan d'équation x + my - mz = 1.

- A 1) Donner un vecteur normal $\overrightarrow{n_m}$ de P_m ainsi qu'un point et un vecteur directeur de D. Vérifier que tous les plans P_m contiennent la droite D.
- **A 2)** Calculer $\overrightarrow{r_m} = \overrightarrow{n_m} \wedge \overrightarrow{a}$. En déduire que D' n'est pas orthogonale à P_m . On appelle alors R_m l'unique plan contenant D' et perpendiculaire à P_m . Obtenir une équation cartésienne de R_m .
- A 3) Déterminer, pour tout réel m, les coordonnées dans \mathcal{R} de I_m point d'intersection des plans P_m, Q et R_m .
- **A 4)** On note (S) d'équation $x^2 + y^2 + z^2 = x$ et Ω le point de Q de coordonnées $\left(\frac{1}{2}, 0, 0\right)$. Préciser la nature géométrique de (S) ainsi que les éléments géométriques qui le caractérisent.

- A 5) Vérifier que I_m appartient à (S) puis que I_m appartient à un cercle dont on donnera le centre
- A 6) Déterminer l'ensemble F des points M de \mathcal{E} par lesquels passe un et un seul plan P_m . Quelle est la réunion des plans P_m lorsque m décrit \mathbb{R} ?

<u>B - Etude d'un exemple d'application f</u> Dans cette partie B, on prend $\overrightarrow{w} = \overrightarrow{v} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{w} = \overrightarrow{j} + \overrightarrow{k} - 5\overrightarrow{i}$, $\alpha = 3, \beta = -3$ et $\delta = 1$.

- ${f B}$ 1) Vérifier que $f\left(x,y,z\right)=(4y+2z,d,e)$ où l'on exprimera d et e en fonction de x,y et z.
- ${f B}$ 2) Déterminer une base et la dimension du noyau de f. f est-il un automorphisme de E?
- B 3) Enoncer complètement le théorème du rang. Obtenir le rang de f.
- **B 4)** Montrer, dans le cas général, que si φ est une application linéaire définie sur le IR-espace vectoriel G où G est engendré par les vecteurs $\overrightarrow{e_1}$, $\overrightarrow{e_2}$ et $\overrightarrow{e_3}$, alors l'image de φ est le IR-espace vectoriel engendré par les vecteurs $\varphi(\overrightarrow{e_1}), \varphi(\overrightarrow{e_2})$ et $\varphi(\overrightarrow{e_3})$.
- **B** 5) Déterminer une base de l'image de f.
- **B 6)** Montrer que $B' = (f(f(\overrightarrow{i})), f(\overrightarrow{i}), \overrightarrow{i})$ est une base de E. Obtenir ensuite la matrice A' de f dans B'.
- **B 7)** Sachant que la matrice de passage P de la base B' à la base $B = (\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ est l'une des deux matrices suivantes :

$$P_1 = \begin{pmatrix} 16 & 0 & 1 \\ -8 & 2 & 0 \\ 16 & 4 & 0 \end{pmatrix}; P_2 = \frac{1}{32} \begin{pmatrix} 0 & -2 & 1 \\ 0 & 8 & 4 \\ 32 & 32 & -16 \end{pmatrix}$$

préciser, en argumentant votre choix, laquelle est P.

Donner le lien matriciel reliant $A = M_B(f)$ à $A' = M_{B'}(f)$.

C - Etude d'un deuxième exemple

Dans cette partie **C**, on prend $\overrightarrow{u} = \overrightarrow{v} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$, $\alpha = -3$, $\beta = 5$ et $\delta = 0$.

On admet qu' alors $M = \begin{pmatrix} 2 & -3 & -3 \\ -3 & 2 & -3 \\ -3 & -3 & 2 \end{pmatrix}$ est la matrice de f dans la base $B = \begin{pmatrix} \overrightarrow{i} \ , \overrightarrow{j} \ , \overrightarrow{k} \end{pmatrix}$.

On rappelle que, par convention, on note $M^0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3$.

C - 1) Prouver, par récurrence sur n, que pour tout entier naturel n, on peut trouver deux réels (qu'on notera a_n et b_n) tels que

$$M^n = \begin{pmatrix} a_n & b_n & b_n \\ b_n & a_n & b_n \\ b_n & b_n & a_n \end{pmatrix}$$

On obtiendra ainsi les relations définissant a_{n+1} et b_{n+1} en fonction de a_n et de b_n .

- C 2) En utilisant les relations précédemment trouvées, vérifier que $\forall n \in \mathbb{N}, b_{n+2} b_{n+1} 20b_n = 0.$
- C 3) En déduire la valeur de b_n puis celle de a_n en fonction de n.

C - 4) Vérifier que M^2 est combinaison linéaire de M et de la matrice I_3 . En déduire que M est inversible et expliciter les coefficients de la matrice M^{-1} .

D - Etude d'un troisième cas

Dans cette partie **D**, on prend $\beta = \delta = 0$. On renomme alors q l'application f de l'introduction, soit

$$\forall \overrightarrow{X} \in E, g\left(\overrightarrow{X}\right) = \alpha\left(\overrightarrow{X} \cdot \overrightarrow{u}\right) \overrightarrow{v}$$

où \overrightarrow{u} et \overrightarrow{v} sont deux vecteurs non nuls fixés de E et où α est un réel non nul.

- **D 1)** Vérifier que si $\alpha(\overrightarrow{u} \cdot \overrightarrow{v}) = 1$, alors g est un projecteur. Démontrer ensuite que si g est un projecteur, alors $\alpha(\overrightarrow{u} \cdot \overrightarrow{v}) = 1$.
- **D 2)** On suppose que $\alpha(\overrightarrow{u} \cdot \overrightarrow{v}) = 1$. On note $F_1 = \{\overrightarrow{X} \in E \ / \ \overrightarrow{u} \cdot \overrightarrow{X} = 0\}$ et $F_2 = \{\lambda \overrightarrow{v} / \lambda \in \mathbb{R}\}$. Vérifier que F_1 et F_2 sont supplémentaires dans E (l'écriture $\overrightarrow{x} = (\overrightarrow{x} g(\overrightarrow{x})) + g(\overrightarrow{x})$ pourra être utile).

Sur quel espace vectoriel parallèlement à quel autre g est-elle alors la projection ?

D - 3) A l'aide des deux questions précédentes, trouver la matrice Π_B dans la base $B = (\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ de la projection p sur $P = \{\overrightarrow{X} = (x, y, z) \in E/x + y + z = 0\}$ parallèlement à la droite D engendrée par $\overrightarrow{j} + \overrightarrow{k} - 5\overrightarrow{i}$.

PROBLÈME D' ANALYSE

A - Etude de la fonction
$$f$$
 telle que $f\left(x\right)=0$ si $x=0$ et $f\left(x\right)=\frac{x}{\ln\left(x\right)}$ sinon

- **A 1)** Obtenir l'ensemble de définition D de f.
- $\mathbf{A} \mathbf{2}$) f est-elle dérivable en 0 ?
- **A 3)** Justifier que f est de classe C^1 sur [0;1].
- A 4) Dresser le tableau de variations de f.

 On y fera apparaître les différentes limites et la valeur de $f\left(e\right)$.

B - Etude de la suite
$$v$$
 telle que $v_0=3$ et $\forall n\in\mathbb{N}, v_{n+1}=\frac{v_n}{\ln{(v_n)}}$

- **B** 1) Montrer que $\forall n \in \mathbb{N}, v_n \geq e$.
- ${\bf B}$ 2) Justifier que la suite v converge et déterminer sa limite.
- **B** 3) Montrer que $\forall x \geq e, 0 \leq f'(x) \leq \frac{1}{4}$.
- B 4) Enoncer l'inégalité des accroissements finis.
- **B** 5) Montrer que $\forall n \in \mathbb{N}, |v_n e| \leq \frac{1}{4^n}$.
- **B 6)** Sachant que $4^5 > 1000$, déterminer un entier n_1 à partir duquel v_n est une valeur approchée de e à 10^{-12} près.

C - Etude de la fonction g telle que $g\left(x\right)=\frac{x^{2}-1}{x\ln\left(x\right)}$

- **C 1)** On admet que, sur $D \setminus \{0\}$, $g'(x) = \frac{1+x^2}{x^2 \ln^2(x)} h(x)$ avec $h(x) = \ln(x) + \frac{1-x^2}{1+x^2}$. Etudier les variations de g.
- C 2) Déterminer la limite de g en 1.
- C 3) Déterminer la position relative de la courbe représentative de g par rapport à celle de f. Déterminer l'aire du domaine plan délimité par les courbes représentatives de f et de g ainsi que par les droites d'équation x=2 et x=e.

D - Tracé d'une courbe paramétrée

On considère (Γ) la courbe donnée par le paramétrage $\left\{ \begin{array}{l} x\left(t\right)=f\left(t\right) \\ y\left(t\right)=g\left(t\right) \end{array} \right. \text{ pour } t \text{ décrivant } D \setminus \left\{0\right\}.$

- **D** 1) Déterminer les asymptotes de (Γ) ainsi que la position relative de (Γ) par rapport à celles-ci.
- **D 2)** Tracer la courbe (Γ) en précisant la tangente au point de paramètre t=e.

E - Solutions d'une équation différentielle

On note (E_1) l'équation différentielle $-x^2z'(x) + xz(x) = z^2(x)$.

On recherche les fonctions z solutions de (E_1) sur K =]1; $+\infty[$ et qui ne s'annulent pas sur K.

- **E 1)** On pose $y = \frac{1}{z}$. Vérifier que y est solution sur K d'une équation différentielle linéaire du premier ordre (E_2) .
- **E 2)** Résoudre (E_2) sur K. On vérifiera ensuite que ces solutions sont de la forme $g_a: x \longmapsto \frac{\ln(ax)}{x}$. Vérifier que, pour a > 1, g_a ne s'annule pas sur K. On a donc ainsi $z(x) = \frac{x}{\ln(ax)}$.
- **E 3)** Pour a > 0, on note (C_a) la courbe représentative de la fonction $f_a : x \longmapsto \frac{x}{\ln{(ax)}}$. Montrer que (C_a) est l'image de (C_1) par une homothétie de centre 0 dont on précisera le rapport.

F - Etude d'une fonction définie à l'aide d'une intégrale

On pose
$$H(x) = \frac{1}{x} \int_{0}^{x} f(t) dt$$
.

- **F** 1) Déterminer l'ensemble de définition J de H.
- $\mathbf{F} \mathbf{2}$) Etudier la limite de H en 0.
- **F 3)** Justifier qu'il existe un réel a dans]0;1] tel que

$$\forall x \in [a; 1], \frac{3}{2}(x-1) \le \ln(x) \le \frac{1}{2}(x-1)$$

En déduire la limite de H à gauche en 1.

FIN DU SUJET