CONCOURS COMMUN 2001

DES ECOLES DES MINES D'ALBI, ALES, DOUAI, NANTES

Epreuve de Mathématiques (toutes filières)

Jeudi 17 mai 2001 de 14h00 à 18h00

Instructions générales :

Les candidats doivent vérifier que le sujet comprend : 4 pages numérotées 1/4, 2/4, 3/4 et 4/4.

Les candidats sont invités à porter une attention particulière à la rédaction : les copies illisibles ou mal présentées seront pénalisées.

Les candidats colleront sur leur première feuille de composition l'étiquette à code à barres correspondante.

PROBLEME 1

Les parties A et B sont indépendantes, mais sont utilisées par la partie C.

PARTIE A:

Pour tout réel a positif ou nul, on note g_a la fonction définie sur \mathbb{R}_+^* par $g_a(t) = t^a$.

A.1. Montrer que la fonction g_a est prolongeable par continuité en 0 (on notera toujours g_a la fonction ainsi prolongée, qui est donc définie et continue sur \mathbb{R}_+). Préciser la valeur de $g_a(0)$. Montrer que la fonction g_a est de classe \mathcal{C}^1 sur \mathbb{R}_+ pour $a \ge 1$.

Soient a et b deux réels positifs ou nuls. On pose

$$I(a,b) = \int_0^1 g_a(t) g_b(1-t) dt.$$

A.2. Justifier l'existence de l'intégrale I(a,b). Comparer I(a,b) et I(b,a).

On écrira abusivement $I(a,b) = \int_0^1 t^a (1-t)^b dt$.

- **A.3.** Soient a et b deux réels positifs ou nuls. Trouver une relation entre I(a+1,b) et I(a,b+1).
- **A.4.** Calculer I(a,0). En déduire que, pour tout entier naturel n, on a

$$I(a,n) = \frac{n!}{(a+1)(a+2)\dots(a+n+1)}$$
.

A.5. Soient p et q deux entiers naturels. Exprimer I(p,q) à l'aide de factorielles.

A.6. En déduire la valeur de l'intégrale

$$J(p,q) = \int_0^{\frac{\pi}{2}} (\sin \theta)^{2p+1} (\cos \theta)^{2q+1} d\theta ,$$

où p et q sont deux entiers naturels.

PARTIE B:

Pour tout réel a strictement positif, on note f_a la fonction définie par

$$f_a(x) = x \ln\left(1 - \frac{a}{x}\right) .$$

B.1. Préciser l'ensemble de définition de f_a .

On note C_a la courbe représentant la restriction de la fonction f_a à l'intervalle $]a, +\infty[$.

B.2. Si a et x sont deux réels tels que 0 < a < x, démontrer l'encadrement

$$\frac{a}{x} \leqslant \ln x - \ln(x - a) \leqslant \frac{a}{x - a} .$$

- **B.3.** En déduire les variations de la fonction f_a sur l'intervalle $]a, +\infty[$ (on dressera un tableau de variations). Préciser la nature des branches infinies de la courbe \mathcal{C}_a .
- **B.4.** Donner l'allure des courbes C_1 , C_2 et C_3 sur un même schéma.
- **B.5.** On fixe a > 0 et on considère la suite $y = (y_n)$ définie, pour tout entier naturel n tel que n > a, par $y_n = \left(1 \frac{a}{n}\right)^n$. Etudier le comportement (sens de variation, limite) de la suite (y_n) .

PARTIE C:

Pour tout réel positif ou nul x et tout entier naturel non nul n, on pose

$$F_n(x) = \int_0^n \left(1 - \frac{u}{n}\right)^n u^x du.$$

- C.1. Montrer que $F_n(x) = n^{x+1} I(x,n)$.
- C.2. En utilisant les résultats de la partie **B**, montrer que, pour tout x fixé, la suite $(F_n(x))_{n\in\mathbb{N}^*}$ est croissante.
- **C.3.** On fixe $x \ge 0$.
 - a. Montrer l'existence d'un réel strictement positif U tel que

$$\forall u \in \mathbb{R}_+ \qquad u \geqslant U \Longrightarrow e^{-u} \leqslant \frac{1}{u^{x+2}}$$
.

b. En déduire que, pour tout entier naturel non nul n, on a

$$F_n(x) \leq \int_0^U e^{-u} u^x du + \frac{1}{U}.$$

c. Montrer que la suite $(F_n(x))_{n\in\mathbb{N}^*}$ est convergente.

Pour tout réel positif ou nul x, on pose $F(x) = \lim_{n \to +\infty} F_n(x)$.

C.4. Démontrer la relation fonctionnelle

$$\forall x \in \mathbb{R}_+ \qquad F(x+1) = (x+1) F(x) .$$

En déduire la valeur de F(k) pour k entier naturel.

PROBLEME 2

Les parties B et C sont liées, mais la partie A est indépendante du reste du problème.

On rappelle que, si p est un entier naturel non nul, la notation $\mathcal{M}_p(\mathbb{R})$ représente l'algèbre des matrices carrées d'ordre p à coefficients réels.

PARTIE A:

Soit p un entier naturel non nul. Une matrice A de $\mathcal{M}_p(\mathbb{R})$ est dite nilpotente d'indice trois si elle vérifie $A^2 \neq 0$ et $A^3 = 0$.

Dans toute cette partie, on note A une matrice de $\mathcal{M}_p(\mathbb{R})$, nilpotente d'indice trois. On note I la matrice-unité d'ordre p.

Pour tout réel t, on note E(t) la matrice

$$E(t) = I + tA + \frac{t^2}{2}A^2 \ .$$

A.1. Vérifier la relation

$$\forall (s,t) \in \mathbb{R}^2$$
 $E(s) E(t) = E(s+t)$.

- **A.2.** En déduire que $(E(t))^n = E(nt)$ pour $t \in \mathbb{R}$ et $n \in \mathbb{N}$.
- **A.3.** Montrer que la matrice E(t) est inversible. Quel est son inverse?
- **A.4.** Montrer que la famille (I, A, A^2) est libre dans l'espace vectoriel $\mathcal{M}_p(\mathbb{R})$.
- **A.5.** En déduire que l'application $E: t \mapsto E(t)$, de \mathbb{R} vers $\mathcal{M}_p(\mathbb{R})$, est injective.
- **A.6.** Dans cette question, p=3 et $A=\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Expliciter la matrice E(t) sous la forme d'un tableau matriciel pour $t\in\mathbb{R}$.

PARTIE B:

Dans cette partie, on note $\mathcal{B}_0=(\overrightarrow{e_1},\overrightarrow{e_2})$ la base canonique de \mathbb{R}^2 . Soit la matrice $A=\begin{pmatrix} 4 & -6 \\ 1 & -1 \end{pmatrix}$ appartenant à $\mathcal{M}_2(\mathbb{R})$. On note f l'endomorphisme de \mathbb{R}^2 qui lui est canoniquement associé.

B.1. Montrer que $F = \text{Ker}(f - 2 \text{id}_{\mathbb{R}^2})$ et $G = \text{Ker}(f - \text{id}_{\mathbb{R}^2})$ sont deux droites vectorielles, supplémentaires dans \mathbb{R}^2 . Préciser un vecteur directeur \overrightarrow{u} de F, et un vecteur directeur \overrightarrow{v} de G.

- **B.2.** Sans calculs, déterminer la matrice de l'endomorphisme f de \mathbb{R}^2 dans la base $\mathcal{B} = (\overrightarrow{u}, \overrightarrow{v})$.
- **B.3.** En déduire qu'il existe une matrice P inversible et une matrice D diagonale (toutes deux carrées d'ordre deux) telles que $A = PDP^{-1}$. Expliciter P, D et P^{-1} .
- **B.4.** Expliciter D^n pour tout n entier naturel. Démontrer la relation $A^n = P D^n P^{-1}$. En déduire l'expression de A^n sous forme de tableau matriciel.

PARTIE C.

On reprend les notations de la partie B.

C.1. En utilisant l'inégalité de Taylor-Lagrange, montrer que, pour tout réel t, on a

$$e^t = \lim_{n \to +\infty} \left(\sum_{k=0}^n \frac{t^k}{k!} \right) .$$

On pourra admettre le résultat de cette question pour traiter les suivantes.

- **C.2.** Pour tout réel t, pour tout entier naturel n, on note $E_n(t)$ la matrice définie par $E_n(t) = \sum_{k=0}^n \frac{t^k}{k!} A^k$. On écrira cette matrice sous la forme $E_n(t) = \begin{pmatrix} a_n(t) & b_n(t) \\ c_n(t) & d_n(t) \end{pmatrix}$. Expliciter (sous forme de sommes) ses coefficients $a_n(t)$, $b_n(t)$, $c_n(t)$, $d_n(t)$.
- **C.3.** Pour tout $t \in \mathbb{R}$, on note E(t) la matrice $E(t) = \begin{pmatrix} a(t) & b(t) \\ c(t) & d(t) \end{pmatrix}$, avec $a(t) = \lim_{n \to +\infty} a_n(t), \ b(t) = \lim_{n \to +\infty} b_n(t)$, etc. Expliciter la matrice E(t).

Réponse partielle : on obtient $a(t) = 3e^{2t} - 2e^{t}$.

C.4. Montrer qu'il existe deux matrices Q et R (carrées d'ordre deux) telles que

$$\forall t \in \mathbb{R} \qquad E(t) = e^{2t} \, Q + e^t \, R$$

et expliciter Q et R.

- C.5. Calculer les matrices Q^2 , R^2 , QR, RQ. Que peut-on dire des endomorphismes q et r de \mathbb{R}^2 canoniquement associés aux matrices Q et R (on pourra préciser la réponse en utilisant les droites F et G de la question B.1.)?
- C.6. En déduire que

$$\forall (s,t) \in \mathbb{R}^2$$
 $E(s) E(t) = E(s+t)$.

Que dire de $(E(t))^n$ pour $n \in \mathbb{N}$?, de $(E(t))^{-1}$?

L'application $E: t \mapsto E(t)$, de \mathbb{R} vers $\mathcal{M}_2(\mathbb{R})$, est-elle injective?