SESSION 2001 PC

ÉPREUVE SPÉCIFIQUE - FILIÈRE PC

MATHÉMATIQUES 1

DURÉE: 4 heures

Les calculatrices ne sont pas autorisées

Notations

Soit n et p des entiers supérieurs ou égaux à 1. $\mathcal{M}_{n,p}(\mathbb{R})$ désigne le \mathbb{R} -espace vectoriel des matrices à coefficients réels ayant n lignes et p colonnes. On identifiera $\mathcal{M}_{n,1}(\mathbb{R})$ et $\mathcal{M}_{p,1}(\mathbb{R})$ respectivement à \mathbb{R}^n et \mathbb{R}^p , que l'on supposera munis de leurs produits scalaires canoniques notés respectivement $\langle \cdot | \cdot \rangle_n$ et $\langle \cdot | \cdot \rangle_p$. Les normes associées à ces produits scalaires seront notées respectivement $| \cdot | \cdot |_n$ et $| \cdot |_p$.

On notera $(E_i)_{1 \le i \le p}$ la base canonique de $\mathcal{M}_{p,1}(\mathbb{R})$ et $(F_j)_{1 \le j \le n}$ celle de $\mathcal{M}_{n,1}(\mathbb{R})$.

Lorsque p=n, $\mathcal{M}_{n,n}(\mathbb{R})$ est noté plus simplement $\mathcal{M}_n(\mathbb{R})$ et est muni de sa structure d'algèbre, I_n représentant la matrice identité.

 $0_{n,p}$ désigne la matrice nulle de $\mathcal{M}_{n,p}(\mathbb{R})$ et 0_n la matrice nulle de $\mathcal{M}_n(\mathbb{R})$.

Pour A appartenant à $\mathcal{M}_{n,p}(\mathbb{R})$, tA désigne la matrice transposée de A: c'est un élément de $\mathcal{M}_{p,n}(\mathbb{R})$.

Ker A est le noyau de A défini par

$$\operatorname{Ker} A = \{ X \in \mathcal{M}_{p,1}(\mathbb{R}) \mid AX = 0 \}$$

 $\operatorname{Im} A$ est l'image de A définie par

$$\operatorname{Im} A = \{ AX \mid X \in \mathcal{M}_{p,1}(\mathbb{R}) \}$$

Enfin, on adopte la notation F^{\perp} pour désigner l'orthogonal d'un sous-espace vectoriel F d'un espace euclidien.

Partie I

Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$.

I.1 Montrer que ${}^{t}AA$ est nulle si et seulement si A est nulle.

Dans toute la suite du problème A sera supposée non nulle.

I.2 Montrer que les matrices tAA et $A{}^tA$ sont diagonalisables au moyen de matrices orthogonales.

I.3 a) X, Y désignant deux éléments de $\mathcal{M}_{n,1}(\mathbb{R})$, exprimer le produit scalaire $X \mid Y >_n$ sous la forme d'un produit matriciel.

Tournez la page S.V.P.

- **b)** Si W est un vecteur propre de tAA associé à la valeur propre λ , exprimer $||AW||_n^2$ en fonction de λ et $||W||_p$.
 - c) En déduire que les valeurs propres de ${}^{t}AA$ sont réelles, positives ou nulles.
 - I.4 a) Pour x réel, calculer les produits matriciels par blocs suivants :

$$\begin{pmatrix} xI_n & A \\ {}^t\!A & I_p \end{pmatrix} \begin{pmatrix} -I_n & 0_{n,p} \\ {}^t\!A & I_p \end{pmatrix} \ \ \text{et} \ \ \begin{pmatrix} xI_n & A \\ {}^t\!A & I_p \end{pmatrix} \begin{pmatrix} -I_n & A \\ 0_{p,n} & -xI_p \end{pmatrix}$$

- **b**) En déduire que les matrices ${}^t\!AA$ et $A{}^t\!A$ ont les mêmes valeurs propres non nulles avec le même ordre de multiplicité.
 - c) En déduire également que les matrices tAA et $A{}^tA$ ont même rang.
 - **I.5** Montrer que si n > p, 0 est valeur propre de A^tA et que si n < p, 0 est valeur propre de tAA .
- **I.6** On note $\lambda_1, \lambda_2, \ldots, \lambda_p$ les valeurs propres de ${}^t\!AA$, chaque valeur propre apparaissant dans cette liste un nombre de fois égal à son ordre de multiplicité et on pose $\mu_i = \sqrt{\lambda_i}$ pour tout i élément de $\{1, 2, \ldots, p\}$.

Les réels μ_i sont appelés valeurs singulières de A.

On suppose les réels λ_i ordonnés tels que $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_p \geq 0$.

a) Montrer que λ_1 est non nul.

On définit alors un unique entier naturel r appartenant à $\{1,2,\ldots,p\}$ comme suit : si toutes les valeurs propres de ${}^t\!AA$ sont non nulles, r=p, sinon r est tel que pour tout $i\leq r,\,\lambda_i>0$ et pour tout $i>r,\,\lambda_i=0$.

Soit (V_1, V_2, \dots, V_p) une base orthonormale de vecteurs propres de ${}^t\!AA$ respectivement associés aux valeurs propres $\lambda_1, \lambda_2, \dots, \lambda_p$; V_1, V_2, \dots, V_r désignent les vecteurs propres associés aux valeurs propres non nulles et lorsque r est strictement inférieur à p, V_{r+1}, \dots, V_p désignent les vecteurs propres associés à la valeur propre 0.

b) Montrer que $r \leq n$ et que la dimension de Ker A^tA est égale à n-r.

Pour tout $i \in \{1, 2, ..., r\}$, on pose $U_i = \frac{1}{\mu_i} A V_i$ et si n > r, on désigne par $(U_{r+1}, ..., U_n)$ une base orthonormale de Ker $A^t A$.

- c) Montrer que pour tout $i \in \{1, 2, ..., r\}$, $AV_i = \mu_i U_i$ et que si r est strictement inférieur à p, pour tout $i \in \{r+1, ..., p\}$, $AV_i = 0$.
 - **d)** Montrer que pour tout $i \in \{1, 2, ..., r\}$, ${}^{t}AU_{i} = \mu_{i}V_{i}$.
 - e) Montrer que si n > r, pour tout $i \in \{r + 1, ..., n\}$, ${}^tAU_i = 0$.
- f) En déduire que le système de vecteurs (U_1, U_2, \dots, U_n) constitue une base orthonormale de vecteurs propres de A^tA et préciser la valeur propre associée à chaque vecteur U_i .
- **I.7** On note V la matrice carrée réelle d'ordre p dont le ième vecteur colonne est le vecteur V_i , U la matrice carrée réelle d'ordre n dont le jème vecteur colonne est le vecteur U_j et $(UAV)_{ij}$ l'élément de la ième ligne, jème colonne de la matrice UAV.
 - a) Montrer que:

$$\forall (i,j) \in \{1,2,\ldots,n\} \times \{1,2,\ldots,p\} \ , \ (^t\!U\!\,\Breve{A}\!\,V)_{ij} = \mu_j \delta_{ij} \ \ \text{où} \ \ \delta_{ij} = \begin{cases} 1 & \text{si} \quad i=j \\ 0 & \text{si} \quad i\neq j \end{cases}$$

b) On note Δ la matrice appartenant à $\mathcal{M}_{n,p}(\mathbb{R})$ dont tous les éléments Δ_{ij} sont nuls sauf $\Delta_{11}, \Delta_{22}, \ldots, \Delta_{rr}$ respectivement égaux à $\mu_1, \mu_2, \ldots, \mu_r$. Montrer que $A = U\Delta^tV$.

La factorisation de A ainsi obtenue est dite décomposition de A en valeurs singulières.

c) Trouver une décomposition en valeurs singulières de chacune des matrices :

$$A_0 = \begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 0 & 2 \end{pmatrix} \quad \text{et} \quad B_0 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

I.8 Montrer que le rang de A est égal à r.

- **I.9 a)** Montrer que $V = \sum_{i=1}^{p} V_i^t E_i$.
 - b) En déduire:

$$A = \sum_{i=1}^{r} \mu_{i} U_{i}^{t} V_{i} , \quad {}^{t} A A = \sum_{i=1}^{r} \lambda_{i} V_{i}^{t} V_{i} , \quad A^{t} A = \sum_{i=1}^{r} \lambda_{i} U_{i}^{t} U_{i}$$

- c) Déterminer les sous-espaces vectoriels suivants : Ker A, Ker ^tA, Im A, Im ^tA.
- **d)** Montrer que Ker ${}^{t}AA = \operatorname{Ker} A$ et Ker ${}^{t}A = \operatorname{Ker} {}^{t}A$

Partie II

Avec les notations de la partie \mathbf{I} , pour $A \in \mathcal{M}_{n,p}(\mathbb{R})$ admettant une décomposition en valeurs singulières $A = U\Delta^t V$, on appelle Δ^+ la matrice de $\mathcal{M}_{p,n}(\mathbb{R})$ dont tous les éléments Δ_{ij}^+ sont nuls sauf $\Delta_{11}^+, \Delta_{22}^+, \ldots, \Delta_{rr}^+$ respectivement égaux à $\frac{1}{\mu_1}, \frac{1}{\mu_2}, \ldots, \frac{1}{\mu_r}$ et on pose $A^+ = V(\Delta^+)^t U$

 Δ^+ (resp. A^+) est appelée pseudo-inverse de Δ (resp. de A). A priori, la matrice A^+ ainsi définie dépend de la décomposition en valeurs singulières choisie pour la matrice A, mais il sera montré à la question **II.9** qu'il n'en est rien et que A^+ est uniquement déterminée à partir de A.

- **II.1** Déterminer les matrices A_0^+ , $A_0A_0^+$, $A_0^+A_0$, $A_0A_0^+A_0$ et $A_0^+A_0A_0^+$.
- **II.2** Déterminer $(A_0^+)^+$.
- II.3 Evaluer $\Delta^+\Delta$ et $\Delta\Delta^+$.
- II.4 Montrer que si A est une matrice carrée inversible (n = p = r), alors $A^+ = A^{-1}$.
- II.5 Montrer que:

$$A^{+} = \sum_{i=1}^{r} \frac{1}{\mu_{i}} V_{i}^{t} U_{i} , \quad AA^{+} = \sum_{i=1}^{r} U_{i}^{t} U_{i} , \quad A^{+}A = \sum_{i=1}^{r} V_{i}^{t} V_{i}$$

- **II.6 a)** Evaluer AA^+U_j pour tout $j \in \{1, 2, ..., n\}$ et en déduire que AA^+ est la matrice dans la base canonique de \mathbb{R}^n de la projection orthogonale de \mathbb{R}^n sur Im A.
- b) Montrer de même que A^+A est la matrice dans la base canonique de \mathbb{R}^p de la projection orthogonale de \mathbb{R}^p sur $(\operatorname{Ker} A)^{\perp}$.

Tournez la page S.V.P.

II.7 Etablir les identités suivantes :

$$AA^{+} = {}^{t}(AA^{+}), A^{+}A = {}^{t}(A^{+}A), AA^{+}A = A, A^{+}AA^{+} = A^{+}$$
 (1)

II.8 Etablir les résultats suivants :

- i) $\operatorname{Im} A = \operatorname{Im} AA^{+}$, $\operatorname{Ker} A^{+} = \operatorname{Ker} AA^{+}$, $\operatorname{Im} A^{+} = \operatorname{Im} A^{+}A$, $\operatorname{Ker} A = \operatorname{Ker} A^{+}A$.
- ii) $\mathbb{R}^n = \operatorname{Im} A \oplus \operatorname{Ker} A^+$, $\mathbb{R}^p = \operatorname{Im} A^+ \oplus \operatorname{Ker} A$.
- **II.9** Soit B une matrice de $\mathcal{M}_{n,n}(\mathbb{R})$ vérifiant :

$$AB = {}^{t}(AB)$$
, $BA = {}^{t}(BA)$, $ABA = A$, $BAB = B$

- a) Montrer que B vérifie les identités suivantes :
 - i) $B = B^t B^t A = {}^t A^t B B$
 - ii) $A = A^t A^t B = {}^t B^t A A$
 - iii) ${}^{t}A = {}^{t}AAB = BA{}^{t}A$
- **b)** En déduire que $B=A^+$, autrement dit que A^+ est l'unique matrice de $\mathcal{M}_{p,n}(\mathbb{R})$ vérifiant les relations (1).
 - **II.10** Montrer que $(A^+)^+ = A$ et ${}^t(A^+) = ({}^tA)^+$.
 - **II.11** Evaluer $(A_0B_0)^+$ et $B_0^+A_0^+$. A-t-on l'égalité?
- **II.12** Soit $H \in \mathcal{M}_{n,1}(\mathbb{R})$ et $\overline{H} = A^+H$. On note $d(H, \operatorname{Im} A)$ la distance de H au sous-espace vectoriel $\operatorname{Im} A$.
- a) Montrer que pour tout $X \in \mathcal{M}_{p,1}(\mathbb{R})$, $AX AA^+H$ et $H AA^+H$ sont orthogonaux et en déduire :

$$\forall X \in \mathcal{M}_{p,1}(\mathbb{R}), ||A\overline{H} - H||_n \le ||AX - H||_n$$

Que vaut alors $d(H, \operatorname{Im} A)$?

- **b)** Montrer que s'il existe $\widetilde{H} \in \mathcal{M}_{p,1}(\mathbb{R})$ tel que $||A\widetilde{H} H||_n = ||A\overline{H} H||_n$ avec $\widetilde{H} \neq \overline{H}$, alors $||\overline{H}||_p < ||\widetilde{H}||_p$.
 - c) Si $H = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, déterminer $\inf_{X \in \mathbb{R}^2} ||A_0 X H||_3$.

Fin de l'énoncé