J. 1032

00 MATH. I - MP

ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE, DES MINES DE NANCY, DES TÉLÉCOMMUNICATIONS DE BRETAGNE, ÉCOLE POLYTECHNIQUE (FILIÈRE TSI).

CONCOURS D'ADMISSION 2000

MATHÉMATIQUES

PREMIÈRE ÉPREUVE FILIÈRE MP

(Durée de l'épreuve : 3 heures)

Sujet mis à la disposition des concours : ENSAE (Statistique), ENSTIM, INT, TPE-EIVP.

L'emploi de la calculette est interdit.

Les candidats sont priés de mentionner de façon très apparente sur la première page de la copie : MATHÉMATIQUES I - MP.

L'énoncé de cette épreuve, particulière aux candidats de la filière MP, comporte 5 pages.

Si un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Le but de ce problème est l'étude d'endomorphismes définis par l'action d'un groupe sur un espace vectoriel de matrices complexes.

Soit M l'ensemble des matrices complexes m d'ordre 2 qui s'écrivent sous la forme suivante :

$$m = \left(\begin{array}{cc} a & i b \\ i \overline{b} & \overline{a} \end{array}\right).$$

Dans cette relation, a et b sont des nombres complexes, i vérifie $i^2 = -1$, \overline{a} (resp. \overline{b}) est le nombre complexe conjugué de a (resp. b).

Partie préliminaire

0. L'ensemble M est un espace vectoriel réel :

Démontrer qu'en munissant l'ensemble M de l'addition des matrices et de la multiplication des matrices par un réel, l'ensemble M est un espace vectoriel réel. Préciser sa dimension.

Démontrer que le produit de deux matrices m_1 et m_2 de l'espace M appartient à M.

Soit I la matrice unité d'ordre 2. Soit m une matrice appartenant à l'espace vectoriel M; la matrice transposée de la matrice m est notée l m. Si p est un entier naturel, m est le produit de la matrice m

p-fois par elle-même; classiquement $m^0 = I$.

Soit G le sous-ensemble des matrices g appartenant à l'espace M dont le déterminant est égal à 1 :

$$G = \{ g \in M \mid \det g = 1 \}.$$

Il est admis que l'ensemble G est, pour le produit des matrices, un groupe.

Soit U le sous-ensemble des matrices u de l'espace M antisymétriques dont le carré est égal à l'opposé de la matrice identité :

$$U = \{ u \in M \mid u + {}^{t}u = 0, u^{2} = -I \}.$$

Soit V le sous-ensemble des matrices symétriques v appartenant à l'espace M:

$$V = \{ v \in M \mid v = {}^tv \}.$$

Il est admis que le sous-ensemble V de M est un sous-espace vectoriel réel.

Soient m_1 et m_2 deux matrices appartenant à l'espace vectoriel M; il est admis que la trace de la matrice $\overline{m_1}$. m_2 est réelle; soit $(m_1 \mid m_2)$ le réel défini par la relation suivante:

$$(m_1 \mid m_2) = \frac{1}{2} Tr(\overline{m}_1.^t m_2) = \frac{1}{2} Tr(m_1.^t \overline{m}_2).$$

L'égalité entre les traces des matrices \overline{m}_1 . tm_2 et m_1 . ${}^t\overline{m}_2$ est admise.

Il est admis que l'espace (M, (. | .)) est un espace euclidien. Si le produit scalaire $(m_1 | m_2)$, de deux matrices m_1 et m_2 , est nul, ces matrices sont dites perpendiculaires. Le sous-espace vectoriel V de M est un espace euclidien lorsqu'il est muni du produit scalaire induit par celui de M.

Première partie

I.1. Propriétés élémentaires des matrices de l'espace M:

Soit m une matrice de l'espace M; démontrer que les matrices $m + {}^{t}m$ et $m \cdot {}^{t}m$ s'expriment au moyen de la matrice identité I, du déterminant detm, de la trace Trm de la matrice m.

Soit g une matrice appartenant à M; déduire du résultat précédent que, pour qu'une matrice g de l'espace M appartienne au groupe G, il faut et il suffit qu'il existe une relation simple entre les matrices g^{-1} et ${}^t\overline{g}$.

Soit m une matrice de l'espace M dont la trace est nulle (Trm = 0); établir la relation : $m = -^t \overline{m}$; calculer les matrices m^2 , $(^tm)^2$ en fonction du déterminant de la matrice m et de la matrice unité I.

I.2 Matrices u:

Déterminer les matrices u qui appartiennent à l'ensemble U défini ci-dessus.

Soit m une matrice de l'espace M, u une matrice de l'ensemble U. Comparer les deux produits de matrices : m.u et $u.\overline{m}$. Démontrer que, lorsque la trace de la matrice m est nulle (Trm = 0), les deux matrices m.u et u.m appartiennent au sous-espace vectoriel V.

I.3. Norme d'une matrice m :

Soit m une matrice de l'espace M; calculer la norme de la matrice $m (|| m || = \sqrt{(m | m)})$ en

fonction du déterminant de cette matrice. Comparer pour deux matrices m et w de l'espace M la norme $\parallel m.w \parallel$ du produit des matrices m et w avec le produit $\parallel m \parallel . \parallel w \parallel$ des normes de ces matrices.

I.4. Matrices appartenant à G:

a. Démontrer que toute matrice g appartenant au groupe G s'écrit, de manière unique, sous la forme

$$g = I \cos \theta + m$$
,

où θ est un réel appartenant au segment $[0,\pi]$ et m une matrice de trace nulle (Trm=0) qui appartient à M.

Calculer, en fonction du réel θ , le déterminant de la matrice m, ainsi définie à partir de la matrice g, ainsi que le carré m^2 de la matrice m.

b. Soit m une matrice de l'espace M différente de 0 ($m \neq 0$) : démontrer que la matrice g_1 définie par la relation ci-dessous appartient au groupe G:

$$g_1 = \frac{1}{\sqrt{\det m}} m.$$

I-5 Un sous-groupe de G:

Soit g_1 une matrice, de trace nulle $(Trg_1 = 0)$, appartenant à G; soit $G(g_1)$ l'ensemble des matrices m_θ définies par la relation suivante

$$m_{\theta} = I \cos \theta + g_1 \sin \theta$$
,

où θ est un réel quelconque appartenant au segment $[0,2\pi]$; soit :

$$G(g_1) = \left\{ m_{\theta} = I \cos \theta + g_1 \sin \theta \mid \theta \in [0, 2\pi] \right\}.$$

- a. Démontrer que l'ensemble $G(g_1)$ est un sous-groupe commutatif du groupe G.
- b. Soit m une matrice de l'espace M; la matrice exponentielle de la matrice m est définie par la relation

$$\exp m = \sum_{n=0}^{\infty} \frac{1}{n!} m^n.$$

Calculer la matrice $\exp(\theta.g_1)$.

Deuxième partie

Cette partie est consacrée à l'étude d'une application définie dans le sous-espace vectoriel V des matrices symétriques de M à l'aide d'une matrice du groupe G.

Dans toute cette partie, g est une matrice donnée du groupe G, de trace nulle (Trg=0); étant donnée une matrice w appartenant au sous-espace vectoriel V soit $l_g(w)$ la matrice définie par la relation suivante :

$$l_g(w) = g.w + w.^t g.$$

II-1. L'endomorphisme l_g de V:

- a. Déterminer la dimension du sous-espace vectoriel réel V de l'espace vectoriel M. Déterminer une base de ce sous-espace vectoriel.
- b. Démontrer que l'application $l_g: w \mapsto l_g(w)$ est un endomorphisme de l'espace vectoriel V. Démontrer que cet endomorphisme l_g n'est pas nul.

Π -2. Propriétés de l'endomorphisme l_g :

a. Comparer l'endomorphisme $l_g \circ l_g : w \mapsto l_g(l_g(w))$ à l'endomorphisme $w \mapsto 2g.l_g(w)$. Calculer l'expression $l_g(g.l_g(w))$ en fonction de $l_g(w)$.

Comparer les deux normes $|| l_g(w) ||$ et $|| g.l_g(w) ||$.

Calculer, pour une matrice u de l'ensemble U, l'expression $l_g(g.u)$.

b. Déterminer une relation simple qui lie, pour deux matrices quelconques v et w de l'espace V, les produits scalaires $(l_g(v) \mid w)$ et $(v \mid l_g(w))$.

En déduire l'endomorphisme adjoint de l'endomorphisme l_g .

c. Déduire des résultats précédents, que, pour toute matrice w de V, les matrices $l_g(w)$ et $g.l_g(w)$ sont perpendiculaires.

II-3. Une base de l'espace V:

Etant données une matrice v de l'espace vectoriel V telle que son image par l'endomorphisme l_g soit différente de 0 ($l_g(v) \neq 0$), une matrice u de l'ensemble U (u appartient à M, est antisymétrique, $u^2 = -I$), soient h_0 le produit des matrices g et u, h_1 l'image de la matrice v par l'application l_g , h_2 le produit des matrices g et h_1 :

$$h_0 = g.u, h_1 = l_g(v), h_2 = g.l_g(v).$$

a. Calculer les produits scalaires de la matrice u avec chacune des matrices h_i , $0 \le i \le 2$, et des matrices h_i , $0 \le i \le 2$, deux à deux :

$$(u \mid h_i), 0 \le i \le 2, (h_k \mid h_l), 0 \le k \le l \le 2.$$

b. Démontrer que la suite des matrices h_i , $0 \le i \le 2$, est une base de l'espace vectoriel V. Déduire de cette base une base orthonormée. Quelle est la matrice associée à l'endomorphisme l_g dans cette base? Déterminer la transformation géométrique associée à l'endomorphisme $\frac{1}{2}l_g$.

II-4. Un endomorphisme de l'espace vectoriel M:

Soit θ un réel donné appartenant au segment $[0,2\pi]$; soit m_{θ} la matrice appartenant au groupe G (question I-5) définie par la relation suivante :

$$m_{\theta} = I\cos\theta + g\sin\theta$$
.

Soit s_{θ} l'application qui, à une matrice w de l'espace vectoriel M, associe la matrice m_{θ} .w:

$$s_{\theta}: w \mapsto m_{\theta}.w.$$

Déterminer la matrice associée à l'endomorphisme s_{θ} dans la base définie par les matrices u, h_0, h_1, h_2 .

Troisième partie

Soit *m* une matrice donnée de l'espace vectoriel *M*. A toute matrice *w* du sous-espace vectoriel *V* de *M* est associée la matrice *m*, *w*, ^t*m*.

III-1. Endomorphisme ψ_m de l'espace V:

a. Démontrer que l'application $w \mapsto m.w.^t m$ est un endomorphisme de l'espace vectoriel V. L'endomorphisme $w \mapsto m.w.^t m$ de V est noté ψ_m .

Calculer $m.u.^t m$ où u est une matrice de l'ensemble U.

b. Déterminer les matrices m de l'espace vectoriel M pour lesquelles l'application ψ_m est l'application identité.

III-2. Endomorphisme ψ_g :

Soit g une matrice, différente des matrices I (identité) et I, appartenant au groupe G.

a. Démontrer, à l'aide de la question I-4, qu'il existe un réel θ appartenant à l'intervalle ouvert $]0,\pi[$ et une matrice m, appartenant à M, différente de 0, de trace nulle, tels que la relation ci-dessous soit vérifiée :

$$g = I\cos\theta + m$$
; $\theta \in]0, \pi[, m \in M]$

Soit γ la matrice définie à partir de la matrice m par la relation suivante :

$$\gamma = \frac{1}{\sqrt{\det m}} m.$$

- b. Exprimer, pour toute matrice w de l'espace vectoriel V, la matrice $\psi_g(w)$ en fonction des matrices w, $l_{\gamma}(w)$, $\psi_{\gamma}(w)$ et du réel θ .
- c. Soit v une matrice de l'espace vectoriel V telle que son image par l'application l_{γ} soit différente de 0 $(l_{\gamma}(v) \neq 0)$. D'après la question II-3.b, la famille $\gamma.u$, $l_{\gamma}(v)$, $\gamma.l_{\gamma}(v)$ est une base de l'espace vectoriel V. Déterminer la matrice associée à l'endomorphisme ψ_g dans cette base. Calculer le déterminant de cette matrice noté $\det \psi_g$. Caractériser la transformation géométrique définie par l'endomorphisme ψ_g .

III-3. Endomorphisme ψ_m :

Soit m une matrice, différente des matrices 0, I et -I, appartenant à l'espace vectoriel M. Démontrer qu'il existe une matrice g appartenant au groupe G telle que l'endomorphisme ψ_m soit proportionnel à l'isomorphisme ψ_g . En déduire une interprétation géométrique de l'endomorphisme ψ_m .

FIN DU PROBLEME