SESSION 2000 MP010

ÉPREUVE SPÉCIFIQUE-FILIÈRE MP

CHIMIE

DURÉE: 2 heures

Les calculatrices programmables et alphanumériques sont autorisées, sous réserve des conditions définies dans la circulaire n°99-018 du 01.02.99.

Deux feuilles de papier millimétré devront être distribuées avec le sujet.

Les parties 1 et 2 sont indépendantes.

PARTIE 1 - Lixiviation de la chalcopyrite

On se propose d'établir les réactions d'oxydoréduction mises en jeu lors du procédé de lixiviation de la chalcopyrite.

La chalcopyrite, de formule $CuFeS_2$, est un solide qui, traditionnellement, est considéré comme un mélange de CuS et FeS.

La lixiviation est un procédé de traitement chimique qui conduit à la solubilisation des éléments métalliques, par exemple, dans le cas de la chalcopyrite, sous forme de Cu^{2+} et Fe^{2+} . Le réactif d'attaque est une solution de Fe^{3+} .

Toutes les réactions sont réalisées à la température de 25°C. Les activités des solutés sont assimilées aux concentrations.

I. Etude de la mise en solution du sulfure de cuivre (II), CuS.

- a) Ecrire l'équation de demi-réaction électronique associée au couple HSO₄/CuS.
- b) Calculer le potentiel standard correspondant.
- c) Ecrire l'équation de demi-réaction électronique associée au couple ${\rm Fe}^{3+}/{\rm Fe}^{2+}$.
- d) Donner les valeurs des potentiels d'oxydoréduction pour les couples précédents, dans les conditions suivantes :

$$\begin{split} \mathbf{pH} &= \mathbf{0} \\ \left[\mathbf{HSO_4^-} \right] &= \mathbf{10^{-2}} \, \mathbf{mol \cdot L^{-1}} \\ \left[\mathbf{Fe^{3+}} \right] &= \mathbf{10^{-2}} \, \, \mathbf{mol \cdot L^{-1}} \\ \left[\mathbf{Fe^{2+}} \right] &= \mathbf{10^{-2}} \, \, \mathbf{mol \cdot L^{-1}} \\ \left[\mathbf{Cu^{2+}} \right] &= \mathbf{10^{-4}} \, \mathbf{mol \cdot L^{-1}} \end{split}$$

- e) Ecrire la réaction entre CuS et Fe³⁺.
- f) Cette réaction peut-elle avoir lieu dans les conditions du I.d) ? Justifier.

II. Etude de la réaction de l'ion Fe³⁺ sur FeS.

- a) Ecrire la réaction de l'ion Fe³⁺ sur FeS en vous inspirant des résultats précédents.
- b) Calculer sa constante d'équilibre.
- c) Vous paraît-il plus facile de mettre en solution FeS ou CuS par action d'une solution d'ion Fe³⁺ dans les conditions précédentes ? Justifier.
- d) 1g de CuS et 1g de FeS sont mis en contact avec $10^{-4}\,\mathrm{m}^3$ d'une solution de Fe^{3+} de concentration égale à $10^{-2}\mathrm{mol.L}^{-1}$ et de pH=0. Calculer les masses restantes des solides lorsque la réaction est terminée, c'est-à-dire lorsque le réactif en défaut est totalement consommé. Donner également les concentrations des ions Cu^{2+} et Fe^{2+} dans la solution dont le volume ne varie pas.

III. Etude de la lixiviation de la chalcopyrite CuFeS2

- a) Ecrire l'équation de la réaction globale R qui accompagne la lixiviation de CuFeS₂ par une solution d'ions Fe³⁺.
- b) 2g de $CuFeS_2$ sont mis en contact avec $10^{-4}\,m^3$ d'une solution de Fe^{3+} de concentration égale à $10^{-2}\,mol\cdot L^{-1}$ et de pH=0. Calculer la masse de solide qui reste lorsque la réaction R est terminée, c'est à dire lorsque le réactif en défaut est totalement consommé. Donner également les concentrations des ions Cu^{2+} et Fe^{2+} dans la solution dont le volume ne varie
- c) Peut-on réellement considérer la chalcopyrite CuFeS₂ comme un mélange de FeS et CuS ? Justifier en vous aidant des parties I et II précédentes.

IV. Régénération des solutions d'ions Fe²⁺.

- a) Ecrire l'équation de demi-réaction électronique associée au couple O_{2gaz}/H_2O .
- b) Donner la valeur du potentiel d'oxydoréduction correspondant aux conditions suivantes : pH = 0 ; pression partielle de dioxygène égale à 0,21 bar.
- c) Ecrire la réaction entre Fe²⁺ et O_{2gaz}.
- ${f d}$) Cette réaction peut-elle avoir lieu pour les conditions initiales :

$$[Fe^{2+}] = [Fe^{3+}] = 10^{-2} \text{ mol } L^{-1}$$
? Justifier.

e) La vitesse de cette réaction peut être accrue en plaçant dans la solution une bactérie Thiobacillus ferroxydans, qui existe sous une forme oxydée notée T_{ox} et une forme réduite notée T_{red} . Positionner qualitativement sur un axe de potentiel les systèmes oxydoréducteurs O_{2gaz}/H_2O , Fe^{3+}/Fe^{2+} et T_{ox}/T_{red} .

V. Procédé de lixiviation

Proposer une séquence de réactions pour la lixiviation de la chalcopyrite montrant que la bactérie est régénérée sous forme oxydée dans le processus.

Données:

Potentiels standards:

$$E_1^0$$
 H^+/H_{2gaz} : 0,000 V

$$\frac{\text{CuS}}{\text{K}} \rightleftharpoons \text{Cu}^{2+} + \text{S}^{2-} \qquad \text{K}_1 = 6,31 \ 10^{-36}$$

$$\frac{\text{FeS}}{\text{K}} \rightleftharpoons \text{Fe}^{2+} + \text{S}^{2-} \qquad \text{K}_2 = 6,31 \ 10^{-18}$$

$$K_1 = 6.31 \cdot 10^{-36}$$

$$E_2^0 Fe^{3+}/Fe^{2+}: 0.771 V$$

$$\overrightarrow{\text{FeS}} \rightleftharpoons \overrightarrow{\text{Fe}^{2+}} + \overrightarrow{\text{S}^{2-}}$$

$$K_2 = 6.31 \ 10^{-18}$$

$$E_3^0$$
 O_{2gaz}/H_2O : 1,230 V

$$\frac{\ln 10.RT}{\mathscr{F}} = 0.059 \text{ V}$$

$$E_4^0$$
 HSO $_4^-/S^{2-}$: 0,133 V

Le symbole — indique un état solide.

Masse atomique
$$(\mathbf{g.mol}^{-1})$$
: $\mathbf{Cu}: 63,54$

Tournez la page S.V.P.

PARTIE 2 - Action de l'hydroxylamine sur la propanone

Dans cette partie, on utilisera : $R = 8,32 \text{ J. mol}^{-1} \text{ . } \text{K}^{-1}$ $T(\text{K}) = \theta(^{\circ}\text{C}) + 273$

I. Hydroxylamine et ion hydroxylaminium

En milieu aqueux, à **pH** acide, l'hydroxylamine **NH₂OH** est susceptible de fixer selon un équilibre instantané, un proton pour donner l'ion hydroxylaminium **NH₃OH**⁺ (réaction de protonation).

- 1. Donner la forme de Lewis des deux espèces NH₂OH et NH₃OH⁺.
- Représenter ces espèces dans l'espace autour de l'atome d'azote. Justifier rapidement (en s'inspirant de ce que l'on connaît des espèces NH₃ et NH₄⁺).

Dans les tables de valeurs thermodynamiques, on a relevé les données du <u>tableau I</u> ci-dessous, pour les trois espèces en solution aqueuse à 25° C.

Tableau I

Espèce	$\Delta_{\mathbf{f}}\mathbf{H}^{\circ}$	$\Delta_{\mathbf{f}}\mathbf{G}^{\circ}$		
	$\left(\mathbf{kJ.mol}^{-1}\right)$	$(kJ.mol^{-1})$		
NH ₂ OH	-90,71	-23,35		
NH ₃ OH ⁺	-128,30	- 57,61		
H ⁺	0,00	0,00		

- où $\Delta_f H^\circ$ et $\Delta_f G^\circ$ sont respectivement les enthalpies standard et enthalpies libres standard de formation des différentes espèces.
- 3. Calculer la constante d'équilibre de la réaction de protonation de l'hydroxylamine à 25°C.
- 4. Par ailleurs, dans un ouvrage de Chimie analytique, on a noté qu'à 25°C, le pK_A du couple NH₃OH⁺/NH₂OH en milieu aqueux, est égal à 6,0. Y a-t-il compatibilité entre les deux types d'information? Justifier.
- 5. Quel doit être le **pH** maximal de la solution pour que l'on considère que la concentration en hydroxylamine reste négligeable devant celle de l'ion hydroxylaminium (inférieure à 1/20) ?

II. Loi de Beer-Lambert.

Rappel:

 pour une substance en solution, traversée par un rayonnement de longueur d'onde fixée, la loi de Beer-Lambert nous dit que la densité optique D est proportionnelle à la concentration de la substance absorbante :

$$D_i = \log I_0 / I = \varepsilon_i l c_i$$

 où: I₀ et I représentent respectivement l'intensité du rayonnement avant et après le passage dans le milieu absorbant.

 ε_i est le coefficient d'extinction molaire caractéristique de la substance absorbante à la longueur d'onde choisie.

l est la longueur du trajet optique dans le milieu absorbant.

ci est la concentration de l'espèce i dans le milieu.

 pour un mélange de plusieurs substances en solution susceptibles d'absorber le rayonnement dans les mêmes conditions, il y a additivité des densités optiques :

$$D = \Sigma D_i$$

où : D_i est la densité optique relative à l'espèce i.

On considère deux espèces : la propanone de formule $\left(CH_3\right)_2C=O$ que l'on appellera A et l'hydroxyiminopropane de formule $\left(CH_3\right)_2C=NOH$ que l'on appellera B, en solution dans l'eau à $25^{\circ}C$ et à pH=2,0 (constant). Ces deux espèces ne réagissent ni avec l'eau ni entre elles.

Toutes les deux sont susceptibles d'absorber dans l'ultra violet avec des coefficients d'extinction molaire respectifs ϵ_A et ϵ_B , pour une longueur d'onde du rayonnement λ .

Dans un récipient de volume V constant, on réalise 5 mélanges tels que la quantité totale $(\mathbf{n_T} = \mathbf{n_A} + \mathbf{n_B})$ des espèces A et B soit toujours la même, et on complète avec de l'eau acidifiée à $\mathbf{pH} = 2.0$.

Des échantillons de chaque mélange sont introduits dans une cellule de spectrophotomètre UV d'épaisseur $1 \text{ cm} (10^{-2} \text{m})$, thermostatée à 25°C .

Le tableau II ci-dessous donne la densité optique mesurée pour chacun des 5 échantillons.

Tableau II

N° échantillon	1	2	3	4	5	
$X_A = n_A/n_T$	0,90	0,75	0,50	0,25	0,10	
$X_B = n_B/n_T$	0,10	0,25	0,50	0,75	0,90	
D	0,0777	0,1763	0,3405	0,5048	0,6033	

1. Montrer que la densité optique du mélange peut s'exprimer de façon simple en fonction de la concentration en constituant A.

$$\mathbf{D} = \mathbf{M} + \mathbf{N}[\mathbf{A}] \tag{1}$$

M et N sont deux constantes pour la série de mesures, que l'on exprimera en fonction de n_T, V, l, ε_A et ε_B .

- 2. A l'aide du <u>tableau II</u>, vérifier la relation (1), en traçant D en fonction de X_A , et calculer M.
- 3. Quel est le sens physique de M?

III. Action de l'hydroxylamine sur la propanone.

On s'intéresse maintenant à la réaction (totale) de l'hydroxylamine sur la propanone, en milieu aqueux à pH = 2,0 fixé à la température de 25° C.

Pour déterminer la loi de vitesse de la réaction, on opère par spectrophotométrie : on réalise donc l'expérience présentée dans le tableau III, au cours de laquelle on suit l'évolution de la densité optique D de la solution au cours du temps. Dans les conditions d'analyse, identiques à celles du paragraphe II, seuls la propanone A et l'hydroxyiminopropane B absorbent le rayonnement.

Tableau III

$\theta = 25^{\circ}$	$\theta = 25^{\circ} \text{C}$ [A] ₀ = 8,83.10 ⁻⁴ mol.L ⁻¹			$[Hydroxylamine]_0 = 2,69.10^{-2} \text{ mol. L}^{-1}$					
$pH = 2,0 \text{ (constant)} [B]_0 = 0$					(sous toutes ses formes)				
t (s)	20	60	100	150	200	250	300	350	∞
D	0,060	0,156	0,235	0,319	0,386	0,440	0,483	0,519	0,669

On appellera \mathbf{D}_{∞} la densité optique de la solution mesurée à $\mathbf{t} = \infty$.

- 1. La densité optique du mélange à un instant t donné peut être représentée en fonction de la concentration en propanone, par la relation (1) du paragraphe II. Pourquoi ?
- 2. La réaction (2) étant totale, quel lien existe-t-il entre M et D_∞?

- 3. Ecrire la loi de vitesse de la réaction (2) en considérant qu'elle est d'ordre 1 par rapport à la propanone A et d'ordre α inconnu par rapport à l'hydroxylamine Y (on appellera k la constante de vitesse de cette réaction).
- **4.** En tenant compte du paragraphe I, calculer les concentrations initiale $[Y]_0$ et finale $[Y]_{\infty}$ en hydroxylamine non ionisée, à partir des données du <u>tableau III</u>.
- 5. Montrer que, dans ces conditions, il est normal de trouver pour la réaction, un ordre global apparent égal à 1. Ecrire l'expression simplifiée de la vitesse trouvée en III.3. On nommera k' la constante apparente : que représente-t-elle ?
- 6. A l'aide des données de ce même tableau III, vérifier que l'ordre global apparent est bien 1.

Pour cela:

- a) Intégrer l'équation établie en III.5.
- b) Transformer l'expression obtenue au III.6.a) pour exprimer l'évolution de la densité optique D en fonction du temps.
- c) A partir de l'expression obtenue au III.6.b), vérifier graphiquement, que l'ordre global apparent est 1.
- d) Calculer la constante apparente k'.
- 7. A partir du <u>tableau IV</u> ci-dessous, rechercher l'ordre partiel α par rapport à l'hydroxylamine. On admettra que les considérations du III.5 restent valables.

Tableau IV

pH (constant)	θ (° C)	$\begin{bmatrix} [\mathbf{A}]_0 \\ (\mathbf{mol}.\mathbf{L}^{-1}) \end{bmatrix}$	$\begin{bmatrix} \mathbf{B} \end{bmatrix}_0$ $\begin{pmatrix} \mathbf{mol.L^{-1}} \end{pmatrix}$		$\begin{pmatrix} \mathbf{k'} \\ \mathbf{s^{-1}} \end{pmatrix}$
2,0	25	7,53.10 ⁻⁴	0	$2,05.10^{-2}$	$3,23.10^{-3}$
2,0	25	5,62.10 ⁻⁴	0	$1,42.10^{-2}$	$2,25.10^{-3}$

Fin de l'énoncé