ÉCOLE POLYTECHNIQUE – ÉCOLES NORMALES SUPÉRIEURES ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES

CONCOURS D'ADMISSION 2016

FILIÈRE PC

COMPOSITION DE MATHÉMATIQUES – (XEULC)

(Durée: 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Toute affirmation doit être clairement et complètement justifiée.

* * *

Les parties I, II et III sont assez largement indépendantes. En particulier la partie II peut être traitée indépendamment de la partie I en admettant les trois premières questions et la partie III (exceptée la dernière question) indépendamment de la partie II. Il est cependant vivement conseillé de suivre la progression naturelle du problème.

Notations

Dans le problème, pour tous entiers positifs non nuls n et k, $\mathcal{M}_{n,k}(\mathbb{R})$ désignera les matrices à coefficients réels de taille $n \times k$. Un vecteur $u \in \mathbb{R}^n$ sera considéré comme un vecteur colonne $\begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$ et u^T désignera le vecteur ligne obtenu par transposition. De même, pour $M \in \mathcal{M}_{n,k}(\mathbb{R})$, M^T désignera la transposée de M.

On note φ la fonction de $[0, +\infty[$ dans \mathbb{R} définie par

$$\varphi(t) = \begin{cases} 0 & \text{si } t = 0 \\ -t \ln(t) & \text{sinon.} \end{cases}$$
 (1)

Soit $N \geqslant 2$ un entier. On note Σ_N l'ensemble des vecteurs $p \in \mathbb{R}^N$ tels que $\sum_{i=1}^N p_i = 1$ et $p_i \geqslant 0$ pour tout $1 \leqslant i \leqslant N$. On remarquera que p peut être interprété comme une loi de probabilité sur $\{1,\ldots,N\}$. On note également H_N la fonction définie sur Σ_N par

$$H_N(p) = \sum_{i=1}^N \varphi(p_i).$$

Partie I

- 1. Vérifier que φ est de classe \mathscr{C}^0 sur $[0,+\infty[$ et \mathscr{C}^∞ sur $]0,+\infty[$. Donner la limite de la dérivée $\varphi'(t)$ de φ lorsque t tend vers 0 dans $]0,+\infty[$.
- 2. Montrer que Σ_N est une partie fermée, bornée et convexe de \mathbb{R}^N .
- 3. Montrer que H_N est positive, continue sur Σ_N et calculer la valeur de $H_N(p)$ lorsque $p_i = 1/N$ pour tout $i \in \{1, ..., N\}$ (loi uniforme sur $\{1, ..., N\}$).
- 4. (a) Soient a et b dans $[0, +\infty[$ tels que a < b. Montrer qu'il existe $\epsilon \in]0, b]$ tel que $\varphi(a+t) + \varphi(b-t) > \varphi(a) + \varphi(b)$ pour tout t > 0 tel que $t \le \epsilon$.
 - (b) En déduire que H_N atteint son maximum sur Σ_N en un unique point que l'on déterminera.
- 5. On note Σ_{∞} l'ensemble des suites de réels $p=(p_i)_{i\geqslant 1}$ telles que $p_i\geqslant 0$ pour tout $i\geqslant 1$ et $\sum_{i=1}^{+\infty}p_i=1$. On note H_{∞} la fonction sur Σ_{∞} définie par $H_{\infty}(p)=\sum_{i=1}^{\infty}\varphi(p_i)$ à valeurs dans $\mathbb{R}_+\cup\{+\infty\}$.
 - (a) On considère $a \in]0,1[$ et $p_i = a(1-a)^{i-1}$ pour $i \ge 1$. Calculer $H_{\infty}(p)$ et étudier ses variations en fonction de a.
 - (b) Montrer qu'il existe $p \in \Sigma_{\infty}$ telle que $H_{\infty}(p) = +\infty$. (Ind : On pourra utiliser sans démonstration que la série de terme général $n^{-1} \ln(n)^{-\beta}$ pour $n \ge 2$ converge si et seulement si $\beta > 1$).
- 6. Soit n un entier strictement positif. On considère une famille $(X_k)_{1 \le k \le n}$ de n variables aléatoires à valeurs dans $\{1, \ldots, N\}$, deux à deux indépendantes et de même loi, définies sur un espace probabilisé $(\Omega, \mathscr{A}, \mathbf{P})$. On suppose de plus que $\mathbf{P}(X_1 = i) = p_i$ et que $p_i > 0$ pour tout $i \in \{1, \ldots, N\}$. Montrer que pour tout $\epsilon > 0$, on a $\mathbf{P}\left(\left|\frac{1}{n}\ln\left(\prod_{k=1}^n p_{X_k}\right) + H_N(p)\right| \ge \epsilon\right)$ tend vers 0 lorsque n tend vers l'infini.

Partie II

Soient $f \in \mathbb{R}^N$ et $J_f : \Sigma_N \to \mathbb{R}$ définie par $J_f(p) = H_N(p) + \sum_{i=1}^N p_i f_i$. On note

$$J_{f,*} = \sup\{ J_f(p) \mid p \in \Sigma_N \}$$

la borne supérieure de J_f sur Σ_N et $\Sigma_N(f) = \{ p \in \Sigma_N \mid J_f(p) = J_{f,*} \}$ l'ensemble des p de Σ_N pour lesquels la borne supérieure est atteinte.

- 7. Montrer que $\Sigma_N(f)$ est non vide.
- 8. Soit $p \in \Sigma_N$.
 - (a) On suppose que $p_1 = 0$ et $p_2 > 0$. Montrer alors qu'il existe p' dans Σ_N tel que $J_f(p') > J_f(p)$ (on pourra chercher p' proche de p).
 - (b) En déduire que si $p \in \Sigma_N(f)$, alors $p_i > 0$ pour tout $i \in \{1, ..., N\}$.
- 9. Soit $p \in \Sigma_N$. On suppose maintenant que $p_i > 0$ pour tout $i \in \{1, ..., N\}$. On note $E_0 = \{a \in \mathbb{R}^N \mid \sum_{i=1}^N a_i = 0\}$.
 - (a) Vérifier que E_0 est un sous-espace vectoriel de \mathbb{R}^N dont on donnera la dimension. Identifier l'orthogonal E_0^{\perp} de E_0 pour le produit scalaire canonique sur \mathbb{R}^N .
 - (b) Soient $a \in E_0$ et $\tilde{p} : \mathbb{R} \to \mathbb{R}^N$ définie par $\tilde{p}(t) = p + ta$. Montrer qu'il existe $\epsilon > 0$ tel que $\tilde{p}(t) \in \Sigma_N$ pour tout $t \in]-\epsilon, \epsilon[$. Calculer la dérivée de \tilde{p} en 0.

- (c) On suppose de plus que $p \in \Sigma_N(f)$. Montrer que pour tout $a \in E_0$, on a $\sum_{i=1}^N a_i(f_i \ln(p_i)) = 0$. En déduire qu'il existe $c \in \mathbb{R}$, tel que $\ln(p_i) = f_i + c$ pour tout $i \in \{1, \ldots, N\}$.
- 10. Identifier $\Sigma_N(f)$. Montrer que $J_{f,*} = \ln(\sum_{i=1}^N e^{f_i})$.

On considère maintenant $F:]0, +\infty[\to \mathbb{R}$ la fonction définie par $F(\beta) = \frac{1}{\beta} \ln(\sum_{i=1}^N e^{\beta f_i})$

- 11. Montrer que F est dérivable et calculer sa dérivée F'. Montrer de plus que pour tout $\beta \in]0, +\infty[$, il existe $p(\beta) \in \Sigma_N(\beta f)$ tel que $F'(\beta) = -\frac{1}{\beta^2}H_N(p(\beta))$.
- 12. Etudier les limites de F en 0 et en $+\infty$.

Partie III

Soient $(\Omega, \mathscr{A}, \mathbf{P})$ un espace probabilisé et $X : \Omega \to \{1, \dots, N\}$ une variable aléatoire de loi $q \in \Sigma_N$. On suppose que l'on dispose d'une famille finie $g = (g_k)_{1 \le k \le d}$ de fonctions sur $\{1, \dots, N\}$ à valeurs dans \mathbb{R} et de la valeur $\overline{g}_k = \mathbf{E}(g_k(X))$ de l'espérance de $g_k(X)$ pour tout $k \in \{1, \dots, d\}$.

On note

$$\Sigma_N(\overline{g},g) = \left\{ \ p \in \Sigma_N \mid \sum_{i=1}^N p_i g_k(i) = \overline{g}_k, \ 1 \leqslant k \leqslant d \ \right\},$$

et on remarque que $q \in \Sigma_N(\overline{g}, g)$ et que si $p \in \Sigma_N(\overline{g}, g)$ alors pour toute variable aléatoire $Y : \Omega \to \{1, \dots, N\}$ de loi p, on a $\mathbf{E}(g_k(X)) = \mathbf{E}(g_k(Y))$.

On cherche dans cette partie à déterminer les probabilités p de $\Sigma_N(\overline{g},g)$ sur lesquelles H_N atteint son maximum.

Soient $M \in \mathcal{M}_{N,d}(\mathbb{R})$ définie par $M_{i,j} = g_j(i)$ pour $(i,j) = \{1,\ldots,N\} \times \{1,\ldots,d\}, \, p \in \Sigma_N$ et $m \in \mathbb{R}^d$. On note $A \in \mathcal{M}_d(\mathbb{R})$ la matrice carrée de taille $d \times d$ définie pour tous $(k,l) \in \{1,\ldots,d\}^2$ par

$$A_{lk} = \sum_{i=1}^{N} p_i (M_{il} - m_l) (M_{ik} - m_k).$$

On note $\widetilde{M}=(M|1)\in \mathcal{M}_{N,d+1}(\mathbb{R})$ la matrice augmentée obtenue en ajoutant une colonne de 1 à droite de M.

- 13. Vérifier que si $Y: \Omega \to \{1, ..., N\}$ est une variable aléatoire de loi p, alors $A_{lk} = \mathbf{E}((g_l(Y) m_l)(g_k(Y) m_k))$ puis que A est une matrice symétrique telle que $\theta^T A \theta \ge 0$ pour tout $\theta \in \mathbb{R}^d$.
- 14. Soit $\theta \in \mathbb{R}^d$ tel que $\theta^T A \theta = 0$. On suppose que $p_i \neq 0$ pour tout $1 \leq i \leq N$.
 - (a) Montrer qu'il existe $c \in \mathbb{R}$, que l'on précisera, tel que pour tout $i \in \{1, ..., N\}$, on a $\sum_{l=1}^{d} M_{il} \theta_{l} = c$.
 - (b) Montrer que si $Ker M = \{0\}$ alors $\theta = 0$.

On note pour tout $\theta \in \mathbb{R}^d$, $f(\theta) = M\theta \in \mathbb{R}^N$, $Z(\theta) = \sum_{i=1}^N e^{f_i(\theta)}$ et

$$p(\theta) = (\frac{e^{f_1(\theta)}}{Z(\theta)}, \dots, \frac{e^{f_N(\theta)}}{Z(\theta)}) \in \Sigma_N$$

où $f(\theta) = (f_1(\theta), \dots, f_N(\theta))$. Enfin, on considère la fonction $L : \mathbb{R}^d \to \mathbb{R}$ définie par

$$L(\theta) = \ln(Z(\theta)) - q^T M \theta.$$

- 15. Montrer que L est de classe \mathscr{C}^1 et calculer son gradient.
- 16. Montrer que si θ est un point critique de L (c'est-à-dire en lequel le gradient de L s'annule) alors $M^T p(\theta) = M^T q$ et $p(\theta) \in \Sigma_N(\overline{g}, g)$.
- 17. Montrer que L est de clase \mathscr{C}^2 et que pour tous entiers $1 \leq l, k \leq d$ on a

$$\frac{\partial^2 L}{\partial \theta_l \partial \theta_k}(\theta) = \sum_{i=1}^N p_i(\theta) (M_{il} - m_l(\theta)) (M_{ik} - m_k(\theta))$$

où
$$m(\theta) = M^T p(\theta)$$
.

On suppose dorénavant que $Ker\widetilde{M} = \{0\}.$

- 18. On s'intéresse dans cette question au nombre de points en lesquels la fonction L atteint son minimum.
 - (a) Montrer que si θ et θ' sont deux points distincts de \mathbb{R}^N tels que L admet un point critique en θ , alors la dérivée de $t \to L(t\theta + (1-t)\theta')$ est strictement croissante sur [0,1] et s'annulle en t=1.
 - (b) En déduire qu'il existe au plus un point critique pour L et conclure sur le nombre de points en lesquels L atteint son minimum.
- 19. On suppose que la fonction L a un minimum global atteint en θ_* .
 - (a) Montrer que $H_N(p(\theta_*)) \geqslant H_N(q)$ puis que $H_N(p(\theta_*))$ est la valeur maximale de H_N sur $\Sigma_N(\overline{g}, g)$.
 - (b) Montrer que $p(\theta_*)$ est l'unique point de $\Sigma_N(\overline{g},g)$ en lequel H_N atteint son maximum.

* *