

Mathématique 1

PC C

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrices autorisées

Le but des deux premières parties est d'étudier l'existence d'une fonction de classe C^{∞} de $\mathbb R$ dans $\mathbb C$, dont on a fixé a priori les valeurs des dérivées successives en 0. Les deux parties suivantes sont consacrées à des classes de fonctions pour lesquelles les dérivées successives en 0 de f déterminent complètement la fonction f.

On note \mathcal{W} l'ensemble des fonctions C^{∞} de \mathbb{R} dans \mathbb{C} nulles en dehors d'un segment (qui dépend de la fonction considérée dans \mathcal{W}). On notera $\binom{n}{p}$ ou C_n^p les coefficients binomiaux.

I Intervention des séries entières

Soit $(u_n)_{n\in\mathbb{N}}$ une suite complexe. On cherche dans cette partie des fonctions $f\in C^{\infty}(\mathbb{R},\mathbb{C})$, qui sont somme d'une série entière sur un intervalle $]-\delta,\delta[$ pour au moins un réel $\delta>0$ et vérifiant $\forall n\in\mathbb{N}, f^{(n)}(0)=u_n$.

I.A — Si $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ pour tout $x \in]-\delta, \delta[$, avec $\delta > 0$, donner une expression de $f^{(k)}(x)$ sur $]-\delta, \delta[$, et en déduire $f^{(k)}(0)$ en fonction de a_k pour tout $k \ge 0$.

I.B – Dans les exemples suivants, proposer une solution f, en précisant une valeur de δ convenable :

- **I.B.1)** $\forall n \in \mathbb{N}, u_n = 2^n.$
- **I.B.2)** Pour tout $n \in \mathbb{N}$ pair, $u_n = (-1)^{n/2} n!$, et pour tout n impair, $u_n = 0$.
- I.C Pour la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\forall n\in\mathbb{N},\ u_n=(2n)!$, montrer qu'aucune fonction du type considéré dans cette partie n'est solution du problème.

II Le théorème de Borel

II.A - Une fonction en cloche

Soit g la fonction de $\mathbb R$ dans $\mathbb R$ définie par $g(x)=\left\{ egin{align*} e^{\dfrac{1}{x(x-1)}} & \text{si } x\in]0,1[\\ 0 & \text{sinon} \end{array} \right.$

II.A.1)

a) Montrer que pour tout naturel p il existe un polynôme $Q_p \in \mathbb{R}[X]$ tel que

$$\forall x \in]0,1[\,,\qquad g^{(p)}(x) = rac{Q_p(x)}{(x(x-1))^{2p}}e^{rac{1}{x(x-1)}}$$

Pour tout entier $p \ge 1$, exprimer Q_p en fonction de Q_{p-1} et Q'_{p-1} .

- b) En déduire que, pour tout entier naturel p non nul, Q_p est de degré 3p-2.
- c) Écrire dans le langage de calcul formel de votre choix un algorithme d'argument un entier p renvoyant la valeur de Q_p en fonction d'une indéterminée X.

On pourra utiliser la commande renvoyant, à partir d'une expression E et d'une variable x, la valeur de la dérivée de cette expression par rapport à cette variable que l'on pourra noter $diff(\mathbf{E}, \mathbf{x})$ ou $\mathbf{D}[\mathbf{E}, \mathbf{x}]$ selon le langage choisi.

II.A.2)

a) Montrer que pour tout entier naturel p

$$\lim_{x \to 0^+} g^{(p)}(x) = \lim_{x \to 1^-} g^{(p)}(x) = 0.$$

b) En déduire que $g \in \mathcal{W}$.

II.B - Une fonction en plateau

Soit h la fonction de \mathbb{R} dans \mathbb{R} définie, pour tout réel x, par $h(x) = \frac{\int_{x-1}^{1} g(t) dt}{\int_{0}^{1} g(t) dt}$.

- **II.B.1)** Montrer que h est de classe C^{∞} sur \mathbb{R} , constante sur $]-\infty,1]$ et sur $[2,\infty[$.
- **II.B.2)** Soit φ la fonction de \mathbb{R} dans \mathbb{R} définie par $\varphi(x) = h(2x)h(-2x)$ pour tout réel x.
- a) Montrer que φ est de classe C^{∞} sur \mathbb{R} et que $\varphi^{(p)}(0) = 0$ pour tout $p \geqslant 1$.
- b) Montrer que φ est nulle en dehors de [-1,1] et tracer sommairement l'allure de son graphe.

c) Justifier pour tout entier naturel p non nul l'existence du réel

$$\lambda_p = \max_{k \in \{0, \dots, p-1\}} \max_{x \in [-1, 1]} \left| \varphi^{(k)}(x) \right|$$

II.C - Le théorème de Borel

Soit $(u_n)_{n\in\mathbb{N}}$ une suite complexe. On définit pour tout entier naturel n une fonction g_n par

$$\forall x \in \mathbb{R} \quad g_0(x) = \varphi(x) \quad \text{ et si } n \geqslant 1 \quad g_n(x) = \frac{x^n}{n!} \varphi(\beta_n x)$$

où $\beta_n = \max(1, 4^n | u_n | \lambda_n)$.

II.C.1)

- a) Montrer que pour tout entier naturel n, la fonction g_n est de classe C^{∞} sur \mathbb{R} .
- b) Montrer que g_n est nulle hors du segment $\left[-\frac{1}{\beta_n}, \frac{1}{\beta_n}\right]$.
- **II.C.2)** Soit n et j des entiers naturels tels que j < n.
- a) Montrer que

$$\forall x \in \mathbb{R} \qquad g_n^{(j)}(x) = \sum_{i=0}^j \binom{j}{i} \beta_n^i \varphi^{(i)}(\beta_n x) \frac{x^{n-j+i}}{(n-j+i)!}.$$

- b) En déduire que $g_n^{(j)}(0) = 0$.
- c) Montrer que, pour tout réel x tel que $|x| \ge \frac{1}{\beta_n}$, on a $g_n^{(j)}(x) = 0$.
- d) Montrer que, pour tout réel x tel que $|x| \le \frac{1}{\beta_n}$, on a $\left|u_n g_n^{(j)}(x)\right| \le 2^{-(n+1)}$.
- **II.C.3)** Déduire des questions précédentes que pour $n, j \in \mathbb{N}$,

$$g_n^{(j)}(0) = \begin{cases} 0 & \text{si } j \neq n \\ 1 & \text{si } j = n \end{cases}$$

II.C.4) En considérant $\sigma = \sum_{n=0}^{\infty} u_n g_n$, montrer qu'il existe une fonction f de classe C^{∞} sur \mathbb{R} telle que $\forall j \in \mathbb{N}$, $f^{(j)}(0) = u_j$ (théorème de Borel).

III Un autre élément de W

On considère une suite $(a_n)_{n\in\mathbb{N}}$ de réels strictement positifs, décroissante de limite nulle, et telle que la série $\sum a_n$ converge.

III.A - Une fonction affine par morceaux

On pose pour tout x réel

$$f_0(x) = rac{1}{2a_0^2} \left(|x + a_0| + |x - a_0| - 2|x|
ight).$$

III.A.1) Montrer que f_0 est nulle en dehors de $[-a_0, a_0]$, préciser sa valeur sur $[-a_0, 0]$ et $[0, a_0]$, justifier sa continuité et tracer rapidement son graphe.

III.A.2) On pose
$$k = \frac{1}{a_0^2}$$
.

- a) Pour tout réel x, montrer que $|f_0(x)| \leq \frac{1}{a_0}$.
- b) Montrer que f_0 est lipschitzienne de rapport k sur \mathbb{R} .

III.B – La première étape

On pose pour tout x réel

$$f_1(x) = \frac{1}{2a_1} \int_{x-a_1}^{x+a_1} f_0(t) dt$$

- III.B.1) Montrer que f_1 est de classe C^1 sur \mathbb{R} et calculer $f'_1(x)$ pour tout x réel.
- **III.B.2)** Montrer que f_1 est nulle en dehors de $[-a_0 a_1, a_0 + a_1]$.
- **III.B.3)** Montrer que $\forall x \in \mathbb{R}, |f_1(x)| \leq \frac{1}{a_0} \text{ et } |f_1'(x)| \leq \frac{1}{a_0 a_1}$.
- III.B.4) Montrer que f_1 est lipschitzienne de rapport k sur \mathbb{R} .

III.C - Une suite de fonctions

On définit par récurrence une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions par f_0 et f_1 définies comme dans les questions précéders dentes et, pour tout naturel $n \ge 2$ et tout x réel,

$$f_n(x) = \frac{1}{2a_n} \int_{x-a_n}^{x+a_n} f_{n-1}(t) dt$$

- Montrer que f_n est de classe C^n sur \mathbb{R} et calculer $f'_n(x)$ pour tout x réel. III.C.1)
- III.C.2)
- Montrer que f_n est nulle en dehors de $[-\sum_{i=0}^n a_i, \sum_{i=0}^n a_i]$. Pour tout $x \in \mathbb{R}$, montrer que $|f_n(x)| \leqslant \frac{1}{a_0}$ et que, si $p \leqslant n$, on a $\left|f_n^{(p)}(x)\right| \leqslant \frac{1}{a_0 a_1 \cdots a_n}$. III.C.3)
- Montrer que f_n est lipschitzienne de rapport k sur \mathbb{R} . III.C.4)
- III.C.5) Montrer que pour tout naturel n

$$\int_{-S}^{S} f_n(t) dt = 1 \quad \text{où } S = \sum_{n=0}^{\infty} a_n.$$

III.D - La limite

On considère la série de fonctions $\sum_{n\geq 1} k_n$ où $k_n=f_n-f_{n-1}$ pour tout $n\geqslant 1$.

- Pour tout entier $n \ge 1$ et tout réel x, montrer que $|k_n(x)| \le \frac{k}{2}a_n$.
- En déduire la convergence normale de la série de fonctions $\sum k_n$ Pour tout réel x, on note

$$s(x) = \sum_{n=1}^{\infty} k_n(x)$$

III.D.2)

- Montrer que pour tout x réel, $f_n(x)$ converge vers une limite que l'on notera w(x) et qui vérifie $w(x) = f_0(x) + s(x).$
- Pour tout réel x réel, montrer que $|w(x)| \leq \frac{1}{2}$.
- Montrer que w est lipschitzienne de rapport k sur \mathbb{R} .
- Montrer que w est nulle en dehors du segment [-S, S].

III.D.3)

a)Montrer que

$$\int_{-S}^{S} w(t) dt = 1.$$

b) En déduire que w n'est pas constante nulle sur \mathbb{R} .

III.D.4)

- Montrer que $\sum_{n\geq 2} (f'_n f'_{n-1})$ converge normalement sur \mathbb{R} . a)
- Trouver un lien entre w, f_1 et $\sum_{n=2}^{\infty} (f_n f_{n-1})$. b)
- En déduire que w est de classe C^1 sur \mathbb{R} . c)
- Montrer que pour tout x réel, $|w'(x)| \leq \frac{1}{a_0 a_1}$ d)

Soit $p \geqslant 2$. III.D.5)

- Montrer que $\sum_{n\geqslant p+1}(f_n^{(p)}-f_{n-1}^{(p)})$ converge normalement sur \mathbb{R} .
- Trouver un lien entre w, f_p et $\sum_{n=p+1}^{\infty} (f_n f_{n-1})$. b)
- En déduire que w est de classe C^p sur \mathbb{R} . c)
- Montrer que pour tout x réel , $|w^{(p)}(x)| \leqslant \frac{1}{a_0 a_1 \cdots a_n}$. d)

IV Classes quasi-analytiques

On considère une suite réelle $M=(M_n)_{n\geq 0}$ vérifiant les trois conditions :

$$\forall n \in \mathbb{N}, \quad M_n > 0 \tag{IV.1}$$

$$M_0 = 1 (IV.2)$$

$$\forall n \geqslant 1, \quad M_n^2 \leqslant M_{n-1}M_{n+1} \quad \text{(IV.3)}$$

On note $\mathcal{C}(M)$ l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{C}$ de classe C^{∞} pour lesquelles il existe deux constantes A > 0 et B > 0 (dépendantes de f) telles que

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ |f^{(n)}(x)| \leqslant AB^n M_n.$$

L'ensemble $\mathcal{C}(M)$ est dit classe associée à la suite M.

La classe C(M) est dite quasi-analytique si

$$\forall f \in \mathcal{C}(M)$$
 $(\forall k \in \mathbb{N}, f^{(k)}(0) = 0) \Rightarrow f = 0.$

IV.A - Quelques propriétés d'une classe

IV.A.1) Montrer que si $f \in \mathcal{C}(M)$ et $(a,b) \in \mathbb{R}^2$, alors la fonction $g: x \mapsto f(ax+b)$ appartient aussi à $\mathcal{C}(M)$.

IV.A.2) Vérifier que C(M) est un espace vectoriel sur \mathbb{C} .

IV.A.3)

- a) Montrer que pour tous $n, k \in \mathbb{N}$ tels que $k \leqslant n$, on a $M_k M_{n-k} \leqslant M_n$. On pourra étudier, pour p fixé, la monotonie de la suite $(M_n/M_{n-p})_{n \geqslant p}$.
- b) En déduire que le produit de deux éléments quelconques de $\mathcal{C}(M)$ est un élément de $\mathcal{C}(M)$.

IV.B - Un exemple de classe quasi-analytique

On note U la suite définie par $U_n = n!$ pour tout $n \in \mathbb{N}$.

- IV.B.1) Montrer que la suite U vérifie les conditions IV.1, IV.2 et IV.3.
- **IV.B.2)** Soit $f \in \mathcal{C}(U)$; on fixe A > 0, B > 0 tels que

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \quad |f^{(n)}(x)| \leq AB^n n!$$

a) Dans cette question et la suivante, on suppose que le réel α vérifie $\forall k \in \mathbb{N}, f^{(k)}(\alpha) = 0$. Montrer que

$$orall x \in \mathbb{R}, \; orall n \in \mathbb{N}, \quad f(x) = \int_{lpha}^x rac{(x-t)^n}{n!} f^{(n+1)}(t) \, dt$$

- b) En déduire que $\forall x \in \mathbb{R}, |x \alpha| \leqslant \frac{1}{2B} \Rightarrow f(x) = 0.$
- c) Montrer que C(U) est une classe quasi-analytique.

IV.C –

IV.C.1) Montrer que si C(M) est quasi-analytique, alors $C(M) \cap W = \{0\}$.

IV.C.2) Montrer la réciproque; on pourra montrer, lorsque $\mathcal{C}(M)$ n'est pas quasi-analytique, l'existence d'une fonction $g \neq 0$ dans $C^{\infty}(\mathbb{R}, \mathbb{C})$, nulle sur $]-\infty, 0]$, puis considérer $h: x \mapsto g(x)g(c-x)$ pour un $c \in \mathbb{R}$ bien choisi.

IV.D — On se donne une suite réelle $M=(M_n)_{n\geqslant 0}$ vérifiant les trois conditions IV.1, IV.2 et IV.3 et on considère les assertions :

la série
$$\sum_{n\geq 1} \left(\frac{1}{M_n}\right)^{1/n}$$
 converge (IV.4)

la série
$$\sum_{n\geq 1} \frac{M_{n-1}}{M_n}$$
 converge (IV.5)

la classe C(M) n'est pas quasi-analytique (IV.6)

Pour tout $n \ge 1$, on note $\alpha_n = M_{n-1}/M_n$.

IV.D.1) Exprimer M_n en fonction de $\alpha_1, \ldots, \alpha_n$ et en déduire que IV.4 \Rightarrow IV.5.

IV.D.2) Démontrer en utilisant la partie III que IV.5 \Rightarrow IV.6.

On peut montrer à l'aide d'outils mathématiques plus élaborés que $IV.6 \Rightarrow IV.4$, ce qui donne une caractérisation des classes quasi-analytiques. Ce résultat constitue une partie du théorème de Denjoy-Carleman.

 \bullet \bullet FIN \bullet \bullet