Concours Centrale - Supélec 2008

Épreuve: MATHÉMATIQUES II

Filière PSI

Notations et définitions

- On désigne la matrice $\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$ par la notation diag(a,b,c). Ainsi diag(1,1,1) est la matrice identité I_3 .
- L'espace vectoriel des matrices réelles 3×3 , noté $\mathcal{M}_3(\mathbb{R})$ est muni du produit scalaire usuel $\langle A, B \rangle = Tr(({}^t A)B) = \sum_{i=1}^3 \sum_{j=1}^3 a_{i,j} b_{i,j}$.
- On note $\| \|$ la norme associée : $\|A\|^2 = \langle A, A \rangle$.
- On note $O_3(\mathbb{R})$ le groupe des matrices orthogonales, $S_3(\mathbb{R})$ l'espace des matrices symétriques, et $S_3^+(\mathbb{R})$ l'ensemble des matrices symétriques positives de $\mathcal{M}_3(\mathbb{R})$, c'est-à-dire des matrices symétriques dont toutes les valeurs propres sont positives ou nulles.
- Si $A \in \mathcal{M}_3(\mathbb{R})$, et P est une partie non vide de $\mathcal{M}_3(\mathbb{R})$, la distance de A à P est, par définition :

$$d(A, P) = \inf_{B \in P} ||A - B||$$

• Si P et Q sont deux parties non vides de $\mathcal{M}_3(\mathbb{R})$, la distance entre P et Q est :

$$d(P,Q) = \inf_{A \in P, \ B \in Q} \|A - B\|$$

On a aussi (et on l'admettra) $d(P,Q) = \inf_{A \in P} d(A,Q)$.

Partie I-Généralités sur les distances

- **I.A** Si $A \in O_3(\mathbb{R})$, calculer ||A||.
- **I.B** Démontrer que $O_3(\mathbb{R})$ est une partie bornée. En déduire que $O_3(\mathbb{R})$ est un compact de $\mathcal{M}_3(\mathbb{R})$.
- **I.C** Démontrer que l'application $M \mapsto ||M||$, de $\mathcal{M}_3(\mathbb{R})$ dans \mathbb{R} est continue.

I.D - Soit $A \in \mathcal{M}_3(\mathbb{R})$. Démontrer qu'il existe $U \in O_3(\mathbb{R})$ tel que $d(A, O_3(\mathbb{R})) = ||A - U||$.

I.E - Soit Φ l'application de $\mathcal{M}_3(\mathbb{R})$ dans \mathbb{R} définie par $\Phi(M) = d(M, O_3(\mathbb{R}))$.

I.E.1) Soient $M, N \in \mathcal{M}_3(\mathbb{R})$.

Démontrer que :

$$\forall U \in O_3(\mathbb{R}), d(M, O_3(\mathbb{R})) \leq ||N - U|| + ||N - M||,$$

puis que:

$$d(M, O_3(\mathbb{R})) \leqslant d(N, O_3(\mathbb{R})) + ||N - M||.$$

I.E.2) En déduire que Φ est continue.

I.F - Soit P un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$. Si $r \in \mathbb{R}^+$, on pose $B_r = \{M \in \mathcal{M}_3(\mathbb{R}) \mid ||M|| \leq r\}.$

- I.F.1) Démontrer qu'il existe r > 0 tel que $d(P, O_3(\mathbb{R})) = d(P \cap B_r, O_3(\mathbb{R}))$.
- I.F.2) Démontrer qu'il existe $A \in P$ telle que $d(P, O_3(\mathbb{R})) = d(A, O_3(\mathbb{R}))$.

Partie II-Décomposition polaire

Soit $M \in \mathcal{M}_3(\mathbb{R})$.

- II.A Démontrer que ${}^{t}MM$ est symétrique à valeurs propres positives.
- **II.B** Démontrer qu'il existe $S \in \mathcal{M}_3(\mathbb{R})$ symétrique à valeurs propres positives telle que ${}^tMM = S^2$.
- **II.C** Démontrer que si M est inversible, il existe $U \in O_3(\mathbb{R})$ telle que M = US.

On admettra que le résultat reste vrai si M est non inversible, c'est-à-dire : « Si $M \in \mathcal{M}_3(\mathbb{R})$, il existe $U \in O_3(\mathbb{R})$ et $S \in S_3^+(\mathbb{R})$, telles que M = US (décomposition polaire) ».

II.D - Étude d'un exemple

On considère la matrice
$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -\sqrt{2} \\ 0 & \sqrt{2} & 0 \end{pmatrix}$$
.

En appliquant la méthode décrite ci-dessus déterminer $U \in O_3(\mathbb{R})$ et $S \in S_3^+(\mathbb{R})$ telles que M = US.

Partie III-Distance à $O_3(\mathbb{R})$

III.A -

III.A.1) Soient $A \in \mathcal{M}_3(\mathbb{R})$ et $U \in O_3(\mathbb{R})$. Démontrer que ||UA|| = ||AU|| = ||A||. En déduire que, pour tout $A \in \mathcal{M}_3(\mathbb{R})$, il existe une matrice D diagonale à coefficients positifs telle que :

$$d(A, O_3(\mathbb{R})) = d(D, O_3(\mathbb{R})).$$

III.A.2) En déduire que si \mathcal{V} est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$, il existe \mathcal{W} sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ vérifiant :

- $\dim(\mathcal{W}) = \dim(\mathcal{V})$
- $d(\mathcal{W}, O_3(\mathbb{R})) = d(\mathcal{V}, O_3(\mathbb{R}))$
- Il existe $D = diag(\lambda_1, \lambda_2, \lambda_3) \in \mathcal{W}$ où les λ_i sont dans \mathbb{R}^+ , telle que $d(\mathcal{W}, O_3(\mathbb{R})) = d(D, O_3(\mathbb{R}))$.

III.B - Soit $D = diag(\lambda_1, \lambda_2, \lambda_3)$, où les λ_i sont dans \mathbb{R}^+ .

III.B.1) Si
$$U \in O_3(\mathbb{R})$$
, montrer que $||D - U||^2 = \left(\sum_{i=1}^3 \lambda_i^2\right) - 2\langle U, D \rangle + 3$.

III.B.2) Si
$$U \in O_3(\mathbb{R})$$
, montrer que $\langle U, D \rangle \leqslant \sum_{i=1}^{3} \lambda_i$.

III.B.3) En déduire que $d(D, O_3(\mathbb{R})) = ||D - I_3||$.

III.C - Étude d'un exemple

Pour la matrice $M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -\sqrt{2} \\ 0 & \sqrt{2} & 0 \end{pmatrix}$ définie dans la question **II.D**, calculer la distance $d(M, O_3(\mathbb{R}))$.

Partie IV - Cas d'un sous-espace de dimension 6

$$\mathbf{IV.A - Dans \ cette \ question \ seulement}, \, \mathcal{V} = \left\{ \begin{pmatrix} a & b & 0 \\ c & d & 0 \\ e & f & 0 \end{pmatrix} \, \, \middle| \, \, (a,b,c,d,e,f) \in \mathbb{R}^6 \right\}.$$

IV.A.1) Soit $A \in \mathcal{V}$. En considérant les valeurs propres de tAA , démontrer l'inégalité : $d(\mathcal{V}, O_3(\mathbb{R})) \geq 1$.

IV.A.2) Calculer $d(I_3, \mathcal{V})$, puis en déduire la valeur de $d(\mathcal{V}, O_3(\mathbb{R}))$.

Dans toute la suite du problème \mathcal{V} désigne un sous-espace vectoriel de dimension 6 quelconque de $\mathcal{M}_3(\mathbb{R})$. On se propose de démontrer que $d(\mathcal{V}, O_3(\mathbb{R})) \leq 1$.

À l'aide de la partie III, on se ramène au cas où $d(\mathcal{V}, O_3(\mathbb{R})) = \|D - I_3\|$, avec $D = diag(x, y, z) \in \mathcal{V}$, et $x, y, z \in \mathbb{R}^+$. On suppose $D \neq I_3$, sinon, $d(\mathcal{V}, O_3(\mathbb{R})) = 0$, et l'inégalité est vraie.

$$\begin{aligned} & \text{Pour } t \in \mathbb{R}, \text{ on note } R_1(t) = \begin{pmatrix} \cos(t) & -\sin(t) & 0 \\ \sin(t) & \cos(t) & 0 \\ 0 & 0 & 1 \end{pmatrix}, R_2(t) = \begin{pmatrix} \cos(t) & 0 & -\sin(t) \\ 0 & 1 & 0 \\ \sin(t) & 0 & \cos(t) \end{pmatrix}, \\ & \text{et } R_3(t) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(t) & -\sin(t) \\ 0 & \sin(t) & \cos(t) \end{pmatrix}. \end{aligned}$$

IV.B - Comparer $(D - I_3)^{\perp}$ et \mathcal{V} .

IV.C - Vérifier que $(R'_1(0), R'_2(0), R'_3(0))$ est une famille libre formée de matrices orthogonales à $I_3 - D$.

Démontrer qu'il existe $a, b, c \in \mathbb{R}$ non tous nuls tels que $aR_1'(0) + bR_2'(0) + cR_3'(0) \in \mathcal{V}$.

$$a,b,c$$
 sont ainsi fixés pour la suite, et on pose $f:t\in\mathbb{R}\mapsto R_1(at)R_2(bt)R_3(ct)$.

IV.D - Démontrer que f a un développement limité du type :

$$f(t) = I_3 + tA + t^2(B+C) + t^2\varepsilon(t)$$
 avec $\varepsilon(t) \xrightarrow[t \to 0]{} 0$ où $A, B, C \in \mathcal{M}_3(\mathbb{R})$ vérifient :

- A ∈ V
- B orthogonale à $I_3 D$
- $C = \frac{1}{2} diag(-a^2 b^2, -a^2 c^2, -b^2 c^2).$

Dans la suite, ε est la fonction apparaissant dans ce développement limité de f.

IV.E - Justifier que :
$$||I_3 + t^2(B + C + \varepsilon(t)) - D|| \ge ||I_3 - D||$$
.

IV.F - Établir que :

$$\left\|I_3 + t^2 \left(B + C + \varepsilon(t)\right) - D\right\|^2 = \left\|I_3 - D\right\|^2 + 2t^2 \langle I_3 - D, C \rangle + t^2 \varepsilon_2(t)$$
 avec $\varepsilon_2(t) \xrightarrow[t \to 0]{} 0$. Qu'en déduire sur $\langle I_3 - D, C \rangle$?

 ${\bf IV.G}$ - Démontrer que l'un au moins des trois réels $2-x-y,\, 2-y-z,\, 2-x-z$ est négatif ou nul.

On suppose pour la suite, ce qui ne change rien, que $2 - x - y \leq 0$.

IV.H - Démontrer que $x^2 + y^2 + z^2 = x + y + z$.

IV.I - Identifier géométriquement les ensembles suivants :

- $E = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = x + y + z\},\$
- $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 2\},$
- $G = \{(x, y, z) \in \mathbb{R}^3 \mid x + y \ge 2\}.$

Justifier que $E \cap F$ est un cercle dont on déterminera le rayon.

Quel est le diamètre de $E \cap G$ (c'est-à-dire la distance maximum entre deux de ses points)?

IV.J - Démontrer que $d(\mathcal{V}, O_3(\mathbb{R})) \leq 1$.

• • • FIN • • •