Concours Centrale - Supélec 2003

Épreuve: PHYSIQUE

Filière MP

Une solution au problème du dioxyde de carbone atmosphérique (CO₂) ?

Il est maintenant bien établi que l'augmentation de la concentration du CO_2 atmosphérique liée à l'activité humaine est l'une des causes principales du réchauffement climatique observé depuis un siècle (la température moyenne de la planète a augmenté de 0,6~K durant les 30 dernières années). Ce problème se propose de présenter l'origine microscopique des propriétés du CO_2 qui expliquent son influence sur le climat terrestre puis d'analyser une solution originale qui permet de stocker à très longue échéance le CO_2 au fond des océans.

Les différentes parties du problème sont très largement indépendantes les unes des autres.

Partie I - Vibrations de la molécule de CO_2 et interaction avec une onde électromagnétique

Pour étudier les vibrations de la molécule de CO_2 , nous supposons que chaque liaison CO est indépendante de l'autre. Les atomes sont assimilés à des points matériels de masse $m_1=2,66\times 10^{-26}kg$ pour l'oxygène et $m_2=1,99\times 10^{-26}kg$ pour le carbone. L'atome de carbone interagit avec les atomes d'oxygène qui l'entourent. On néglige l'action de la pesanteur, les interactions entre les deux atomes d'oxygène extrêmes et on considère le système isolé formé par une seule molécule.

I.A - Vibrations longitudinales de la molécule

Nous supposons dans cette partie que la molécule est parfaitement linéaire: les trois atomes restent alignés dans une direction de vecteur unitaire $\overrightarrow{e_x}$. Au voisinage de sa configuration d'équilibre, on peut modéliser l'interaction de l'atome de carbone central avec les atomes d'oxygène par

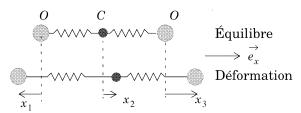


Figure 1 : Modélisation de la molécule de CO_2 . La grandeur x_1 est négative sur la figure.

deux ressorts de raideur et de longueur au repos identiques (respectivement notées k et r_0 , avec $k=1,42\times 10^3 N.m^{-1}$ et $r_0=0,166~nm$). À l'équilibre les deux

liaisons ont même longueur et l'atome de carbone est confondu avec le centre d'inertie de la molécule. En dehors de l'équilibre, chaque atome est repéré par son déplacement relativement à sa position d'équilibre : x_1, x_2, x_3 (figure 1).

I.A.1) Définir le référentiel barycentrique (B) de la molécule. Justifier que ce référentiel est galiléen.

Dans toute la suite, toutes les grandeurs cinématiques seront évaluées dans le référentiel barycentrique de la molécule.

I.A.2)

- a) Justifier la relation : $m_1(x_1 + x_3) + m_2x_2 = 0$.
- b) Montrer que x_1 et x_3 vérifient un système de la forme :

$$\begin{cases} \frac{d^2x_1}{dt^2} + ax_1 + bx_3 = 0 \\ \text{et exprimer } a \text{ et } b \text{ en fonction de } k, m_1, m_2. \end{cases}$$

$$\begin{cases} \frac{d^2x_1}{dt^2} + ax_3 + bx_1 = 0 \end{cases}$$

On recherche les solutions harmoniques du système. Dans ce cas, on peut associer aux grandeurs $x_1(t)$, $x_2(t)$ et $x_3(t)$ les grandeurs complexes $\underline{x_1}(t) = A_1 \exp(j\omega t)$, $\underline{x_2}(t) = A_2 \exp(j\omega t)$ et $\underline{x_3}(t) = A_3 \exp(j\omega t)$ où les A_i sont a priori complexes.

- c) Déterminer les deux seules valeurs positives de ω qui conduisent à des coefficients A_i non tous nuls. On désignera la plus petite de ces pulsations par ω_I et l'autre par ω_{II} et on les exprimera en fonction de k, m_1 , m_2 .
- d) Calculer numériquement ω_I et ω_{II} .
- e) Les solutions harmoniques ainsi déterminées correspondent à deux sortes de mouvements.
- Dans l'un d'entre eux l'atome de carbone reste fixe. Quelle est la pulsation associée et quel est alors le mouvement des deux atomes d'oxygène ? Pouvaiton le prévoir ?

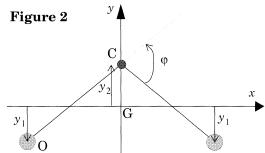
• Dans l'autre type de mouvement les deux atomes d'oxygène ont même déplacement à chaque instant. Quelle est la pulsation correspondante ? Calculer dans ce cas le rapport A_2/A_1 .

On appellera dans la suite **mode I** et **mode II** les mouvements associés respectivement aux pulsations ω_I et ω_{II} .

I.B - Modes de flexion de la molécule de CO_2 .

On étudie maintenant un autre type de mouvement dans lequel les liaisons ont une longueur fixe, r_0 , mais où les deux liaisons CO peuvent former entre elles un angle φ (figure 2). Pour les faibles valeurs de φ , l'énergie potentielle associée à la flexion de la molécule est notée $E_p = \frac{1}{2} C \varphi^2$, avec $C = 7,70 \times 10^{-19} J$.

- I.B.1) Justifier qualitativement la forme de cette énergie potentielle.
- I.B.2) On envisage un mode de déplacement particulier (figure 2), de faible amplitude, dans lequel :
- le plan de la molécule est fixe (noté *Gxy*),
- l'atome de carbone reste sur la verticale Gy, avec un déplacement y₂ par rapport à la position d'équilibre (3 atomes alignés),



Flexion de la molécule de ${\rm CO}_2$. Les déplacements horizontaux des atomes d'oxygène ne sont pas représentés. Sur la figure on a $y_1 < 0$.

- les deux atomes d'oxygène ont
 le même déplacement vertical y₁ et de petits déplacement horizontaux x₁, x₃). Ce type de mouvement est appelé mode III dans la suite.
- a) Montrer que, pour de petits déplacements, on a au premier ordre en φ :

$$y_2 \left(1 + \frac{m_2}{2m_1} \right) = r_0 \frac{\varphi}{2} \text{ et } x_1 = x_3 = 0.$$

- b) Exprimer l'énergie cinétique de la molécule en fonction de $\frac{d\phi}{dt}$, m_1 , m_2 et r_0 .
- c) Déterminer littéralement puis numériquement la pulsation ω_{III} des petites oscillations de ω autour de 0, dans ce mode de vibration.

I.C - Interaction avec une onde électromagnétique

Les liaisons CO sont en réalité polarisées : chaque atome d'oxygène porte une charge $-\delta e$ et l'atome de carbone une charge $+2\delta e$ (e est la charge élémentaire et δ une constante positive inférieure à 1). On envoie sur la molécule alignée dans la direction \overrightarrow{e}_r et située dans le plan z=0 une onde électromagnétique

incidente de pulsation Ω , également polarisée rectilignement dans la direction $\overrightarrow{e_x}$ et se propageant dans la direction $\overrightarrow{e_z}$.

Le champ électrique de l'onde est :

$$\vec{E}(z,t) = E_0 \cos \left[\Omega \left(t - \frac{z}{c} \right) \right] \vec{e}_x,$$

où c représente la vitesse de la lumière dans le vide $(c = 3 \times 10^8 m.s^{-1})$.

- I.C.1) Sous l'effet de l'onde électromagnétique, les atomes se déplacent comme au I.A). Justifier que l'on peut négliger la force magnétique agissant sur les atomes et établir le système d'équations vérifié par $x_1(t)$ et $x_3(t)$.
- I.C.2) On résout ce système en régime sinusoïdal forcé, en utilisant la notation complexe et en posant : $x_1(t) = A_1 \exp(j\Omega t)$, $x_3(t) = A_3 \exp(j\Omega t)$.

Calculer A_1 et A_3 . Montrer l'existence d'une résonance pour une valeur particulière de Ω . Que valent A_1 et A_3 à la résonance ? Qu'en pensez-vous ?

- I.C.3) On appelle $\vec{p}(t)$ le moment dipolaire résultant de la molécule. Exprimer $\vec{p}(t)$ en fonction de $\delta, e, E_0, \Omega, \omega_H, m_2, m_1$ et t.
- I.C.4) Absorption de l'onde incidente.
- a) Un dipôle électrique oscillant à la pulsation Ω avec une amplitude p_0 émet un rayonnement qui transporte en moyenne une puissance :

$$P = \frac{\mu_0 \Omega^4 p_0^2}{12\pi c}$$
 (où μ_0 est la perméabilité du vide).

Exprimer la puissance électromagnétique P émise par la molécule de CO_2 en fonction de $\delta, e, E_0, \Omega, \omega_{II}, \mu_0, c, m_2$ et m_1 .

- b) Rappeler l'expression de l'intensité I_0 de l'onde incidente (puissance moyenne transportée à travers une unité de surface perpendiculaire à la direction de propagation), en fonction de E_0, c, μ_0 . Montrer que l'on peut écrire P sous la forme $P=\eta I_0$. Exprimer η en fonction de $\delta, e, \Omega, \omega_{II}, \mu_0, m_2$ et m_1 .
- c) On suppose maintenant que le milieu contient n molécules par unité de volume, dont le tiers, statistiquement, est dans l'orientation considérée jusqu'ici. L'énergie rayonnée par les molécules est prélevée de l'onde incidente, qui voit donc son intensité I(z) diminuer avec z. Montrer que I(z) varie selon une loi $I(z) = I(0)\exp(-z/l)$, et exprimer l en fonction de η et n. Vérifier l'homogénéité de cette expression. En déduire que l'onde est très fortement absorbée lorsque $\Omega \to \omega_{II}$.
- d) À partir de l'analyse précédente, expliquer qualitativement pour quoi on observe également une absorption importante de l'onde électromagnétique incidente lors que $\Omega \to \omega_{III}$, mais aucune lors que $\Omega \to \omega_I$. Calculer numériquement les longueurs d'ondes dans le vide λ_{II} et λ_{III} des rayonnements électromagné-

tiques correspondant aux pulsations ω_{II} et ω_{III} . À quel domaine du spectre électromagnétique appartiennent-elles ?

Partie II - CO, et effet de serre

On cherche dans cette partie à décrire le phénomène d'effet de serre et son amplification du fait de l'augmentation de la quantité de dioxyde de carbone dans l'atmosphère.

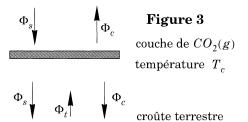
II.A - Modèle à une couche

La description du modèle est schématisée figure 3. La croûte terrestre est assimilée à un corps noir de température T_t , émettant un rayonnement thermique de flux surfacique Φ_t . La Terre est supposée entourée d'une couche contenant du dioxyde de carbone gazeux en concentration C_0 fixée. La température de la couche est notée T_c et le rayonnement qu'elle émet est associé au flux surfacique Φ_c des deux côtés de la couche.

On désigne par Φ_s le flux solaire surfacique reçu. Les rayons du soleil arrivent sous incidence normale sur la couche gazeuse.

II.A.1)

- a) Rappeler la forme de la loi de déplacement de Wien.
- b) On sait que le soleil (de température moyenne $T_s \approx 6000\,K$) émet un rayonnement principalement situé dans le



Effet de serre - Modèle à une couche

température T_{t}

domaine visible $(\lambda_m \approx 0, 5\mu m)$. En utilisant un ordre de grandeur raisonnable pour les températures, déterminer approximativement la longueur d'onde d'émission radiative maximale de la croûte terrestre et de la couche de CO_2 .

- c) À partir des résultats de la partie I, justifier alors que la couche de $CO_2(g)$ absorbe le rayonnement de flux surfacique Φ_t . On admettra par la suite que cette absorption est totale et donc que la couche de $CO_2(g)$ peut être assimilée à un corps noir dans le domaine spectral du flux radiatif terrestre mais qu'elle est transparente au rayonnement solaire (flux surfacique Φ_s).
- d) Rappeler la loi de Stefan-Boltzmann. (On rappelle la valeur numérique de la constante de Stefan $\sigma=5,670\times10^{-8}W.~m^{-2}.K^{-4}$).

II.A.2)

a) Traduire l'équilibre radiatif de l'ensemble {couche + croûte terrestre} — on supposera que la croûte terrestre et la couche ont sensiblement le même rayon, et donc la même surface émissive d'un côté. Faire de même pour la croûte terrestre seule.

b) Exprimer la température T_t en fonction de Φ_s et de la constante de Stefan. Comparer le résultat à celui que l'on obtiendrait si la couche n'existait pas.

II.B - Modèle couches multiples

On suppose que la quantité de $CO_2(g)$ augmente. On modélise cette augmentation en considérant la superposition de N couches contenant du $CO_2(g)$, toutes identiques à la précédente. Ainsi, chaque couche admet la même concentration C_0 en $CO_2(g)$. La superposition des différentes couches est schématisée figure 4-a-. On note Φ_{cp} le rayonnement émis vers le haut et vers le bas par la $p^{\text{lème}}$ couche de température T_{cp} . Le rayonnement émis par une couche est totalement absorbé par les autres couches.

II.B.1) Traduire l'équilibre radiatif :

- de l'ensemble {toutes les couches + croûte terrestre},
- de la $p^{ième}$ couche,
- de la première couche,
- de la croûte terrestre,

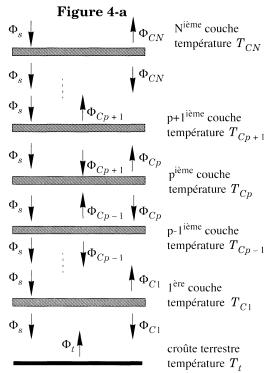
en terme de flux surfaciques.

II.B.2) En déduire Φ_{cp} et Φ_t en fonction de Φ_s , de N et de p .

II.B.3) Donner finalement l'expression de T_t en fonction de Φ_s , de N et de σ . Conclure sur l'influence de N sur T_t .

II.C - Modèle continu

On modélise maintenant l'ensemble des N couches de dioxyde de carbone de manière continue. La Terre est donc entourée d'une couche gazeuse sphérique de rayon moyen proche de celui R_T de la Terre et d'épaisseur $h(h \triangleleft R_T)$ (voir figure 4-b). Le nombre de molécules de $CO_2(g)$, par unité de volume, C_0 , ne varie pas ; seule h est susceptible de varier si la quantité de $CO_2(g)$ varie.



Effet de serre - Modèle à couches multiples

On suppose qu'initialement

h=5~km (on se situe dans la basse troposphère) et $T_t=288~K$. Le flux surfacique du rayonnement solaire vaut $\Phi_s=342~W.m^{-2}$.

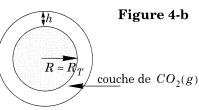
II.C.1) Soit N_0 le nombre total de molécules de $CO_2(g)$ présentes dans la couche gazeuse. Selon le modèle à couches multiples, N_0 est proportionnel au nombre de couches $N:N_0=\gamma N$.

a) Montrer alors que $N=\alpha h$, où α est une constante positive que l'on exprimera en fonction de C_0 , γ et R_T .

En déduire alors que T_t s'écrit :

$$T_t = \left(\frac{\phi_s(1+\alpha h)}{\sigma}\right)^{\frac{1}{4}}$$

b) Préciser la valeur numérique et l'unité de α .



Effet de serre -Modèle continu

II.C.2) On suppose une augmentation de 10% du volume de CO_2 présent dans la troposphère. Déterminer numériquement l'augmentation Δh de l'épaisseur de la couche de dioxyde de carbone. En déduire numériquement l'augmentation de la température T_t .

II.D - Validité du modèle

Quel(s) phénomène(s) physique(s) a-t-on négligé dans les modèles précédents ?

Partie III - Transport du CO₂ industriel au fond des océans par torpilles de CO₂ solides

Un des moyens de se débarrasser du ${\cal CO}_2$ industriel consiste à le stocker au fond des mers. Parmi les technologies possibles, l'idée suivante a été proposée :

- A l'aide d'installations frigorifiques situées sur des plates formes marines, on solidifie le CO₂ (issu d'un processus industriel) en le moulant sous forme de très grandes torpilles.
- Ces torpilles sont abandonnées depuis la surface de la mer et tombent au fond, où elles vont se ficher dans les sédiments.

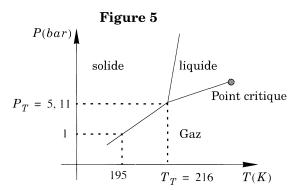


Diagramme de phase du CO_2 .

Point triple: $P_T = 5,11 \ bar \ ; T_T = 216 \ K \ ;$

Température de sublimation à 1 $bar: T_S = 195K$

Le CO_2 reste ainsi piégé au fond des océans.

Un des problèmes posés par ce schéma est la perte de masse des torpilles par changement de phase au cours de leur chute. Le CO, ainsi libéré est susceptible de retourner à l'atmosphère, et doit donc être minimisé. Nous nous proposons d'évaluer cette perte de masse afin de juger de la viabilité du processus. Nous admettons que l'océan est un fluide au repos, incompressible homogène et uniforme de masse volumique $\rho_0 = 1030 \text{ kg.m}^{-3}$, de température T_0 également uniforme $(T_0=280~K)$. L'accélération de la pesanteur, g, vaut $g=9,8~m.s^{-2}$. Le CO_2 solide a une masse volumique $\rho=1500~{\rm kg.m}^{-3}$, supposée indépendante de la température et de la pression. Son enthalpie massique de sublimation est L_S = 570 kJ.kg $^{-1}$ et celle de fusion est L_f = 189 kJ.kg $^{-1}$ (considérées constantes). Le diagramme de phase simplifié du ${\it CO}_2$ est donné sur la figure 5. On appelle Oz la verticale descendante, orientée par le vecteur unitaire \vec{e}_z . La cote z=0correspond à la surface de l'océan (où il règne une pression P_0 = 1bar); le fond

est à la profondeur z = H = 4000 m.

III.A - Changements de phase en surface des torpilles.

III.A.1) Déterminer la pression dans l'océan en fonction de la profondeur z.

III.A.2) En vous appuyant sur le diagramme de phase, montrer que le CO_2 en surface de la torpille est susceptible de se sublimer jusqu'à une profondeur Z_S et de subir une fusion au delà. Calculer numériquement Z_S .

III.A.3) Nous modélisons la torpille par un cylindre de rayon r(t) dépendant du temps et de hauteur h constante. Pour les applications numériques on prendra h = 30 m et r(t = 0) = 2,70 m.

La température à la surface de la torpille est supposée uniforme. Lorsque le centre d'inertie de la torpille se trouve à la profondeur z, cette température est égale à la température d'équilibre de changement de phase $T_{eq}(z)$ régnant à cette profondeur. De ce fait, la torpille reçoit de la part de l'océan une thermique par unité de surface

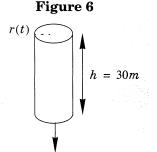


Schéma simplifié d'une torpille de CO2 solide. En pratique une torpille réelle serait profilée pour optimiser ses propriétés hydrodynamiques.

 $P_{th} = K(T_0 - T_{ea}(z))$, où K est une constante $(K = 66 \times 10^2 \text{ W.} \text{K}^{-1}.\text{m}^{-2})$. On considérera que ce transfert thermique se produit seulement par la surface latérale du cylindre. On note L(z) l'enthalpie massique de changement de phase (sublimation ou fusion) du CO_2 à la profondeur z.

a) Quelle énergie δQ la torpille doit-elle recevoir par transfert thermique pour que son rayon varie d'une quantité infinitésimale dr par changement de phase? b) En déduire le taux de variation dr/dt du rayon de la torpille en fonction de $K,T_0,L(z),T_{eq}(z),\rho$.

Pour un raisonnement en ordre de grandeur, on suppose que durant la phase de sublimation la température reste constante et vaut $T_1=205K$ et que durant la phase de fusion, elle vaut $T_2=223~K$.

c) Déterminer dr/dt durant les deux phases.

III.B - Étude dynamique de la torpille

Du fait des changements de phase se produisant à sa surface, la masse M(t) de la torpille varie au cours du temps ; on admet pour simplifier que la matière ainsi perdue a une vitesse nulle relativement au référentiel terrestre (supposé galiléen). On note V(t) la vitesse verticale (descendante). En plus de son poids $M(t)\vec{g}$, la torpille est soumise à la force d'Archimède \overrightarrow{F}_a et à une force de frottement de la forme : $\overrightarrow{F} = -\alpha_f r^2 V \overrightarrow{e}_z$, où α_f est une constante, à peu près indépendante des dimensions de la torpille ($\alpha_f = 1, 0 \times 10^4~kg \cdot s^{-1}.m^{-2}$).

III.B.1) En raisonnant sur la quantité de mouvement d'une même quantité de matière à l'instant t et à l'instant t + dt, établir l'équation du mouvement :

$$\frac{d(\overrightarrow{MV})}{dt} = \overrightarrow{Mg} + \overrightarrow{F}_a + \overrightarrow{F}$$

On remarquera que la masse de la torpille varie au cours du temps.

III.B.2) En déduire que r(t) et V(t) sont liés par une équation différentielle du type

$$\frac{dV}{dt} + \left(\frac{2}{r}\frac{dr}{dt} + \frac{1}{\tau_0}\right)V = \beta g$$

dans laquelle τ_0 et β sont des constantes que l'on exprimera en fonction de $\rho, \rho_0, \alpha_f, h$.

III.B.3) La résolution du système d'équations obtenu nécessite l'emploi de méthodes numériques. Celles-ci montrent que, pour les dimensions envisagées, on a :

$$\frac{2}{r}\frac{dr}{dt} \ll \frac{1}{\tau_0}$$
 , hypothèse que l'on supposera vérifiée dans toute la suite.

- a) Déterminer la vitesse de la torpille (abandonnée sans vitesse initiale) en fonction du temps. Montrer qu'elle finit par atteindre une valeur limite V_l . Pouvait-on physiquement déterminer cette valeur limite ? Interpréter τ_0 physiquement.
- b) Calculer V_I et τ_0 numériquement.

III.C - Évaluation de la perte de masse

III.C.1) Calculer numériquement le temps t_c mis par la torpille pour toucher le fond (situé à 4000m).

III.C.2) On montre que la phase de sublimation dure $t_S = 5,5\,s$. Calculer numériquement le rayon final de la torpille alors qu'elle arrive au fond de l'océan et sa perte relative de masse au cours de la chute. Que pensez-vous de ce moyen de se débarrasser du dioxyde de carbone ?

••• FIN •••