ÉCOLE POLYTECHNIQUE

FILIÈRE MP

CONCOURS D'ADMISSION 2002

PREMIÈRE COMPOSITION DE MATHÉMATIQUES

(Durée : 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

* * 7

On attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

La première partie est indépendante des trois autres.

Première partie

1. On considère une suite $(w_n)_{n\in\mathbb{N}}$ de réels strictement positifs vérifiant $\sum_{n=0}^{\infty}w_n=1$ et une suite $(a_n)_{n\in\mathbb{N}}$ de réels telle que $\sum_{n=0}^{\infty}w_na_n^2<+\infty$.

Vérifier que la fonction $x\mapsto D_a(x)=\sum_{n=0}^\infty w_n(a_n-x)^2$ est bien définie sur ${\bf R}$ et atteint son minimum. On déterminera ce minimum ainsi que l'ensemble des points où il est atteint.

2. On considère une fonction continue réelle de carré intégrable f sur l'intervalle]0,1[. Vérifier que la fonction $x\mapsto D_f(x)=\int_0^1 \big(f(t)-x\big)^2\mathrm{d}t$ est bien définie sur $\mathbf R$ et atteint son minimum. On déterminera ce minimum ainsi que l'ensemble des points où il est atteint.

Deuxième partie

Dans cette partie, on se donne une fonction réelle f sur l'intervalle I=]0,1[, continue par morceaux et intégrable.

- 3. Vérifier que la fonction $x \mapsto \Delta(x) = \int_0^1 |f(t) x| dt$ est bien définie sur **R**.
- **4.a)** Montrer que la fonction Δ est continue et convexe.

- b) Déterminer les limites de $\Delta(x)$ lorsque x tend vers $+\infty$ ou $-\infty$.
- 5. Montrer que Δ admet un minimum, que l'on notera V, et que l'ensemble M des points où Δ atteint ce minimum est un intervalle.
 - **6.** Exemples. Déterminer Δ, V et M dans les deux cas suivants :

a)
$$f(t) = \begin{cases} 1 \text{ si } t \leq 1/2 \\ 0 \text{ si } t > 1/2 \end{cases}$$
.

b) f(t) = t.

Troisième partie

On se donne à nouveau une fonction f ayant les propriétés indiquées dans la **deuxième** partie; on suppose en outre que f est monotone par morceaux, c'est-à-dire qu'il existe des nombres

$$t_0 = 0 < t_1 < \ldots < t_n = 1$$

tels que f soit monotone sur chaque intervalle $]t_i, t_{i+1}[$. Pour tout intervalle J de \mathbf{R} , éventuellement réduit à un point, on définit une fonction χ_I sur I par

$$\chi_J(t) = \begin{cases} 1 \text{ si } f(t) \in J \\ 0 \text{ sinon} \end{cases}.$$

- 7. Vérifier que la fonction χ_J est continue par morceaux et intégrable sur I. On note $\lambda(J)$ son intégrale.
 - 8. Établir les propriétés suivantes de l'application λ :
- a) Étant donnés des intervalles J_1, \ldots, J_n deux à deux disjoints dont la réunion est encore un intervalle, on a

$$\lambda(J_1 \cup \ldots \cup J_n) = \lambda(J_1) + \ldots + \lambda(J_n) ;$$

b) Étant donnée une suite croissante d'intervalles $(J_n)_{n\in\mathbb{N}}$, on a

$$\lambda \Big(\underset{n \in \mathbf{N}}{\cup} J_n \Big) = \sup_{n \in \mathbf{N}} \lambda(J_n) .$$

c) Étant donnée une suite décroissante d'intervalles $(J_n)_{n\in\mathbb{N}}$, on a

$$\lambda\Big(\bigcap_{n\in\mathbf{N}} J_n\Big) = \inf_{n\in\mathbf{N}} \lambda(J_n) .$$

9. Soit x un réel et ε un réel > 0; on pose

$$J_1 =]-\infty, x]$$
, $J_2 =]x, x + \varepsilon[$, $J_3 = [x + \varepsilon, +\infty[$.

a) Démontrer l'égalité suivante :

$$\frac{1}{\varepsilon} \left(\Delta(x+\varepsilon) - \Delta(x) \right) - \lambda(J_1) + \lambda(J_3) = \lambda(J_2) + \frac{2}{\varepsilon} \int_0^1 \chi_{J_2}(t) \left(x - f(t) \right) dt ,$$

où Δ est la fonction définie à la question 3.

- b) Montrer que Δ admet en tout point x une dérivée à droite que l'on déterminera.
- c) Même question pour la dérivée à gauche.
- d) Comparer ces deux dérivées et dire pour quelles valeurs de x elles sont égales.
- 10. On pose

$$\phi(x) = \lambda(] - \infty, x]) \tag{1}$$

$$\phi(x+0) = \lim_{n \to +\infty} \phi\left(x + \frac{1}{n}\right) \qquad \phi(x-0) = \lim_{n \to +\infty} \phi\left(x - \frac{1}{n}\right) \tag{2}$$

- a) Exprimer $\phi(x+0)$ et $\phi(x-0)$ en fonction de $\phi(x)$ et de $\lambda(\{x\})$.
- b) Montrer que l'ensemble N des réels x vérifiant $\phi(x-0) \leq 1/2 \leq \phi(x)$, s'il n'est pas vide, est un intervalle fermé borné.
- c) Comparer les ensembles M (défini à la question 5.) et N et préciser le comportement de ϕ sur l'intérieur de N lorsque N n'est pas réduit à un point.

Quatrième partie

- 11. On se donne une fonction f sur I, réelle, continue, intégrable et monotone par morceaux ; on note M_f et V_f ce qui était noté M et V.
 - a) Démontrer l'inclusion $M_f \subset f(I)$.
 - b) Montrer que M_f est réduit à un point, que l'on notera m_f .
 - c) Comparer V_f et $\int_0^1 |f(t)| dt$, puis m_f et $2 \int_0^1 |f(t)| dt$.
- 12. On considère une suite (g_n) de fonctions sur I, réelles, continues, intégrables et monotones par morceaux; on suppose que cette suite converge en moyenne vers une fonction g continue par morceaux, intégrable et monotone par morceaux. On pose $m_n = m_{g_n}$. Montrer que l'ensemble des valeurs d'adhérence de la suite (m_n) est non vide et inclus dans l'ensemble M_g des points où la fonction $x \mapsto \int_0^1 |g(t) x| dt$ atteint son minimum.

* *