Centrale Chimie PC 2012

Thème de l'épreuve Étude des stéréoisomères: propriétés physico-chimiques et applications en chimie organique
Principaux outils utilisés chimie organique, mélange binaire, solutions aqueuses, oxydoréduction

Corrigé

(c'est payant, sauf le début): - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Extrait gratuit du corrigé

(télécharger le PDF)
           

Énoncé complet

(télécharger le PDF)
                       

Rapport du jury

(télécharger le PDF)
           

Énoncé obtenu par reconnaissance optique des caractères


PC
4 heures

Calculatrices autorisées

2012

Chimie

Depuis la découverte, par Biot, de la rotation du plan de polarisation de la 
lumière par des cristaux de quartz
en 1812 et par des solutions (de sucrose, de camphre et d'acide tartrique) en 
1815 puis le premier dédoublement
(du tartrate double de sodium et d'ammonium) réalisé par Pasteur en 1848, la 
stéréochimie n'a cessé de se
développer : de l'identification en 1874 du « carbone asymétrique » comme cause 
de chiralité par Le Bel et
van't Hoff (premier prix Nobel de chimie en 1901), aux synthèses asymétriques 
les plus modernes (prix Nobel
2001 à Knowles, Sharpless et Noyori pour le développement de catalyseurs 
d'hydrogénation et d'oxydation
chiraliens) qui sont exploités dans un large éventail de synthèses 
industrielles de produits pharmacologiques tels
les antibiotiques, les anti-inflammatoires et les cardiotoniques. Ainsi, la 
stéréochimie constitue aujourd'hui un
domaine d'études central pour toute la chimie du vivant (chimie prébiotique, 
sucres, protéines, ADN,. . .), la
synthèse organique (synthèse sélective d'anantiomères) et la recherche de 
mécanismes de réactions.
Ce sujet aborde divers aspects de la stéréochimie. Une première partie sera 
consacrée aux applications de la stéréoisomérie en chimie organique. Une 
seconde partie portera sur l'étude de quelques propriétés physico-chimiques
de deux molécules stéréoisomères, l'acide maléique et l'acide fumarique. Ces 
deux parties sont indépendantes.
L'ensemble des données numériques est regroupé à la fin du sujet.

I Stéréoisomérie en chimie organique
Cette partie est consacrée à la caractérisation de la stéréoisomérie en chimie 
organique, puis à des synthèses et à
des séparations de molécules chirales par trois méthodes : synthèse à partir 
d'un « réservoir chiral » (ensemble de
molécules chirales aisément accessibles, souvent extraites de la nature), 
synthèse asymétrique et dédoublement
par cristallisation directe.
I.A ­

Excès énantiomérique et pureté optique

I.A.1) Proposer une définition pour chacune des notions suivantes : une 
molécule chirale, deux molécules
énantiomères l'une de l'autre et deux molécules diastéréoisomères l'une de 
l'autre. Illustrer ces définitions par
des exemples concrets.
I.A.2) On définit l'excès énantiomérique (noté ee) d'un mélange de deux 
énantiomères Ed et E d'un même
couple par la relation :
|nd - n |
ee =
nd + n
où nd est la quantité de matière d'énantiomère dextrogyre Ed et n la quantité 
de matière d'énantiomère lévogyre
E dans l'échantillon.
a) Entre quelles bornes l'excès énantiomérique ee peut-il varier ? Dans quels 
cas ces bornes sont-elles effectivement atteintes ?
b) On note |max | le pouvoir rotatoire (en valeur absolue) d'une solution 
contenant un énantiomère pur d'une
substance chirale à concentration massique cm donnée. On définit la pureté 
optique po d'un mélange de deux
énantiomères d'un même couple dont la somme des deux concentrations massiques 
est égale à cm par la valeur
absolue du rapport du pouvoir rotatoire  de ce mélange à celle d'un énantiomère 
pur à la concentration cm :
-  po = -max Établir le lien très simple entre po et ee.
Quel intérêt voyez-vous à avoir introduit ces deux grandeurs pour caractériser 
un mélange d'énantiomères ?
c) Pour le (S)-acide 2-éthyl-2-méthylbutanedioïque énantiomériquement pur à la 
concentration massique cm =
11,9 × 10-3 g · mL-1 dans le chloroforme, on mesure un pouvoir rotatoire  = 
+3,0 × 10-2  dans une cuve de
longueur l = 1,00 dm, à la température de 22 C et à la longueur d'onde  = 589 
nm.
Représenter le (S)-acide 2-éthyl-2-méthylbutanedioïque. Cet acide est-il 
dextrogyre ou lévogyre ?
d) Calculer la valeur de l'excès énantiomérique pour un mélange constitué de 
75% de l'énantiomère S et 25%
de l'énantiomère R du même acide et une somme des concentrations massiques des 
deux énantiomères toujours
égale à cm = 11,9 × 10-3 g · mL-1 .
e) Expérimentalement, pour l'échantillon décrit à la question d), on mesure, 
dans les mêmes conditions qu'à la

question c), exp
= +2,4 × 10-2  . En déduire, à partir de cette mesure expérimentale, la valeur 
de la pureté
optique de cet échantillon.
3 avril 2012 11:53

Page 1/8

f) Un important écart est observé entre l'excès énantiomérique et la pureté 
optique mesurée pour des acides
carboxyliques en solvants apolaires ou peu polaires ; ce phénomène est appelé « 
effet Horeau ». Proposer une
interprétation pour rendre compte de ce phénomène.
I.B ­
Augmentation de l'excès énantiomérique
L'-pinène est un terpène présent dans de nombreux végétaux ou extraits de 
végétaux (menthe, lavande, essence
de térébenthine. . .). Une de ses formes commerciales est le mélange des deux 
énantiomères enrichi en isomère
dextrogyre (d--pinène) avec un excès énantiomérique de 91,0 %. On étudie une 
méthode pour augmenter l'excès
énantiomérique de ce mélange.
I.B.1) Le d--pinène réagit avec le borane-diméthylsulfure H3 BSMe 2 dans le 
solvant tétrahydrofurane (THF)
pour donner le diisopinocamphéylborane, noté Ipc 2 BH, selon la réaction de la 
figure 1.

BH
H3 BSMe 2

2

THF
2
Diisopinocamphéylborane
Ipc 2 BH

d--pinène
Figure 1

À partir des formules de Lewis du borane BH3 et du sulfure de diméthyle Me 2 S, 
proposer une formule de
Lewis du composé H3 BSMe 2 faisant apparaître une liaison covalente entre 
l'atome de bore et l'atome de soufre
et d'éventuels doublets libres, lacunes électroniques et charges formelles.
I.B.2) On considère un mélange des deux énantiomères de l'-pinène de fraction 
molaire x en d--pinène
et (1 - x) en --pinène, tel que x > 0, 50. Lorsqu'un excès de ce mélange réagit 
avec le complexe boranediméthylsulfure par la même réaction qu'en I.B.1), il 
peut se former trois stéréoisomères de configurations
différentes, que l'on note (d)BH lorsque l'atome de bore s'est associé à une 
molécule de pinène dextrogyre
et une molécule de pinène lévogyre, (dd)BH lorsque l'atome de bore s'est 
associé à deux molécules de pinène
dextrogyre et ()BH lorsque l'atome de bore s'est associé à deux molécules de 
pinène lévogyre. On admet que,
dans les conditions expérimentales utilisées, (d)BH est totalement soluble dans 
le THF alors que (dd)BH et
()BH précipitent.
a) Exprimer l'excès énantiomérique du mélange initial, noté eei , en fonction 
de la fraction molaire x en d-pinène.
b) On suppose que le borane réagit de façon équiprobable avec les deux 
énantiomères de l'-pinène et que la
fixation de la seconde molécule de pinène sur un atome de bore ne dépend pas de 
la configuration de la première
molécule de pinène fixée. Justifier le fait que la probabilité pour qu'un atome 
de bore soit relié à deux groupes
d'-pinène dextrogyre est égale à x2 . En déduire la probabilité pour qu'un 
atome de bore soit relié à deux
groupes d'-pinène lévogyre et la probabilité pour qu'un atome de bore soit 
relié à deux groupes énantiomères
différents.
c) Le précipité obtenu après la réaction avec le complexe 
borane-diméthylsulfure est constitué d'un mélange
des deux énantiomères (dd)BH et ()BH, d'excès énantiomérique noté eep . À 
l'aide de la question b), établir
la relation donnant l'excès énantiomérique du précipité en fonction de celui du 
mélange initial :
2eei
eep =
1 + ee2i
d) Comparer eep à eei . Justifier l'évolution de l'excès énantiomérique.
e) On peut obtenir les deux énantiomères de l'-pinène par réaction du mélange 
de (dd)BH et ()BH avec du
benzaldéhyde, avec rétention de configuration. HC Brown (Prix Nobel 1979) l'a 
réalisé à partir du mélange des
deux énantiomères de l'-pinène d'excès énantiomérique 91,0 % : il a obtenu un 
mélange d'excès énantiomérique
99,6 %. Les hypothèses faites lors du calcul précédent vous semblent-elles 
correctes ?
I.C ­
Synthèse du phaséate de méthyle
Le phaséate de méthyle est un métabolite de l'acide abscissique, hormone 
favorisant les dormances des graines
et des bourgeons l'hiver et intervenant dans la protection des plantes contre 
différents stress (fermeture des
stomates lors de sécheresse). On étudie ici sa synthèse à partir du --pinène, 
isomère du d--pinène, qui est
également une espèce chimique rencontrée dans de nombreux végétaux odorants.
Les structures des espèces chimiques utiles pour la résolution de cette partie 
sont toutes fournies en figure 2.

3 avril 2012 11:53

Page 2/8

Me O2 C

CO2 Me
O

Me O

O

Me O2 C

O

OMe

Carbonate de diméthyle

--pinène

Me

1

2

Me
O

O
O

OTBDMS

O
Dihydropyrane

3

THPO

THPO

OH

O
O

7

OH

O
OH

10

O

O

OMe

11

Figure 2
I.C.1) Donner la structure de la d-nopinone, obtenue par traitement du --pinène 
par l'ozone dans le dichlorométhane, suivi d'une hydrolyse.
I.C.2) Traitée par du carbonate de diméthyle en présence d'hydrure de sodium 
(base forte), la d-nopinone
conduit au céto-ester 1. Proposer un mécanisme pour la réaction de formation de 
1, en notant la d-nopinone de
façon simplifiée.
I.C.3) En présence de carbonate de potassium K2 CO3 et d'iodométhane, 1 est 
alkylé en 2. En raisonnant
sur les pKa communément admis des couples mis en jeu, justifier la 
régiosélectivité de l'alkylation. Proposer
également une justification pour la stéréosélectivité de la réaction.
L'ouverture d'un cycle, puis une suite de réactions non étudiées ici conduisent 
à 3.
I.C.4) Le traitement de 3 par le tétrahydroaluminate de lithium LiAlH4 , suivi 
d'hydrolyse prudente, conduit
à 4 qui réagit à son tour avec le dioxyde de manganèse MnO2 pour conduire à 5, 
de formule brute C11 H16 O4 ,
dont le spectre infrarouge comporte, entre autres, une bande large vers 3400 
cm-1 et une bande fine et intense
1
à 1678 cm-1 . Le spectre de RMN H montre que le composé 5 n'est pas un aldéhyde.
En déduire les structures de 4 et 5, en les justifiant brièvement à l'aide des 
données spectroscopiques.
I.C.5) Par réaction avec le dihydropyrane en milieu acide, le méthanol conduit 
à un acétal noté Me OTHP.
a) Expliciter la structure de cette espèce chimique et proposer un mécanisme 
pour sa synthèse, en justifiant la
régiosélectivité de la réaction.
b) Le groupe hydroxyle de 5 est protégé de la même manière pour donner 6. 
Représenter la formule topologique
de 6.
I.C.6) Un alcyne de type R C C H a des propriétés acides. L'espèce 7 (où le 
sigle TBDMS représente
un groupe protecteur du groupe hydroxyle - OH) réagit avec le butyllithium dans 
le solvant THF à une
température de -20  C, puis une solution de 6 dans le solvant THF est ajouté 
goutte à goutte. Le mélange
est ensuite hydrolysé. Écrire la structure de l'espèce 8 ainsi obtenue, sachant 
qu'elle comporte un seul groupe
hydroxyle -OH.
Le groupe -OTBDMS est transformé en groupe hydroxyle -OH permettant ainsi 
d'obtenir l'alcool 9.
I.C.7) L'espèce 9 est ensuite transformé en espèce 10 par réaction avec un 
hydrure d'aluminium encombré,
NaAlH2 (OC2 H4 OCH3 )2 . Quelle autre méthode pourrait être utilisée pour 
transformer une liaison acétylénique

3 avril 2012 11:53

Page 3/8

(C C) en liaison éthylénique ? Pourquoi cette méthode ne conduirait-elle pas 
exclusivement à l'espèce chimique
10 souhaitée ?
I.C.8) Proposer un enchaînement réactionnel (sans spécifier les mécanismes) 
permettant d'obtenir 11 à partir
de 10.
I.C.9) Le traitement de l'espèce 11 par un mélange de tétrahydrofurane THF et 
d'acide chlorhydrique permet
d'aboutir au phaséate de méthyle. Ce composé a pour formule brute C16 H22 O5 , 
son spectre infrarouge traduit
la présence d'un unique groupe hydroxyle -OH, d'un ester conjugué et d'une 
cétone non conjuguée. Son spectre
1
de RMN H montre qu'il n'a que trois protons éthyléniques ; par ailleurs ce 
spectre présente quatre singulets
correspondant à des groupes méthyle.
a) Expliciter le mécanisme de déprotection du cétal conduisant à une cétone, en 
notant la molécule de façon
simplifiée.
b) Déterminer la structure du phaséate de méthyle.
I.D ­
Chiralité axiale et synthèse asymétrique
OH
La chiralité axiale est une chiralité particulière liée à la répartition 
asymétrique de deux
paires de substituants autour d'un « axe de chiralité ». Cette partie est 
consacrée à
l'étude d'un exemple de ce type de chiralité.
I.D.1) La N-méthylpseudoéphédrine réagit avec le potassium métallique pour 
former
Ph
un alcoolate de potassium.
a) La structure de la -N-méthylpseudoéphédrine est donnée figure 3. Préciser 
les desN
cripteurs stéréochimiques (configurations) des atomes asymétriques de cette 
molécule,
en justifiant brièvement la méthode utilisée.
Figure 3
b) Le potassium K a pour numéro atomique Z = 19. En déduire la configuration 
électronique de l'atome de potassium dans son état fondamental. À quelle 
famille d'éléments
le potassium appartient-il ? Citer un autre élément de cette famille.
c) Écrire l'équation de la réaction entre la -N-méthylpseudoéphédrine et le 
potassium et justifier la nature de
la réaction. On notera B le produit organique de cette réaction.
I.D.2) L'espèce chimique 12 réagit avec 2,5 équivalents de B dans le 
tétrahydrofurane THF pour conduire
très majoritairement, après traitement du mélange réactionnel, à l'alcène 13 
(cf figure 4).

1) B (2,5 équiv.)
THF, -90  C
2) Traitement
CO2 H

Br

CO2 H
12

13
Figure 4

a) Quel est le type de réaction mis en oeuvre ici ? Justifier brièvement sa 
régiosélectivité.
b) Quel est le rôle de B ? Pourquoi convient-il d'en utiliser au moins deux 
équivalents plutôt qu'un seul ? Quel
traitement permet d'obtenir finalement la molécule 13 ?
c) La molécule 12 est-elle chirale ? Si tel est le cas dessiner son 
énantiomère. Mêmes questions pour la molécule 13.
d) Représenter la conformation la plus stable de la molécule 12.
e) Qu'aurait-on obtenu comme produit de réaction en remplaçant B par de 
l'éthanolate de potassium ?
I.E ­

Dédoublement par cristallisation directe : utilisation des diagrammes binaires

On envisage la séparation de deux énantiomères (« dédoublement ») Ed et E d'un 
même couple, à partir
d'un mélange liquide de ces deux énantiomètres. On note xd la fraction molaire 
en énantiomère Ed dans ce
mélange, T  la température de fusion (commune) des deux énantiomères, TR la 
température de fusion du
mélange racémique et fus H 0 l'enthalpie de fusion (commune) des deux 
énantiomères, supposée indépendante
de la température. On cherche à savoir s'il est possible d'obtenir un solide 
constitué d'un énantiomère seul, en
présence d'un mélange liquide des deux énantiomètres Ed et E .
3 avril 2012 11:53

Page 4/8

Les dédoublements étudiés concerneront les acides ortho-chloromandélique, 
ortho-fluoromandélique et parachloromandélique dont les structures sont données 
figure 5 et les températures de fusion en fin d'énoncé.
Cl

F
CO2 H

CO2 H

CO2 H
Cl

OH
Acide ortho-chloromandélique

OH
Acide ortho-fluororomandélique

OH
Acide para-chloromandélique

Figure 5
Pour un mélange binaire de deux énantiomères E et Ed , non miscibles à l'état 
solide, il existe deux principaux
types de diagrammes solide-liquide à pression constante.
- Diagramme type conglomérat : présence d'un eutectique à l'abscisse xd = 0,50 
et à la température TR .
- Diagramme type racémique vrai : existence d'un composé défini noté, Ed , à 
l'abscisse xd = 0,50, de température de fusion TR et de deux eutectiques, à 
même température TE et d'abscisses xd = a et xd = 1 - a, où
a dépend du composé étudié, avec 0 < a < 0,50.
I.E.1) Représenter l'allure de ces deux types de diagrammes binaires 
solide-liquide et identifier les phases
présentes dans les différentes zones, en précisant leur composition.
I.E.2) Cas du conglomérat
a) Lorsque le solide Ed pur est en équilibre avec un mélange liquide de Ed et E 
de fraction molaire 0,50 6
xd 6 1, supposé idéal, établir l'équation de la courbe du liquidus en 
déterminant la relation donnant xd en
fonction de T , R (constante des gaz parfaits), T  et fus H 0 . En déduire 
l'expression de TR en fonction de T  ,
R et fus H 0 .
b) Parmi les trois dérivés de l'acide mandélique étudiés dans cette partie, un 
seul possède un diagramme binaire
du type conglomérat : identifier lequel en justifiant brièvement.
c) On dispose d'un mélange liquide contenant une quantité de matière nd = 0,85 
mol d'énantiomère Ed et n =
0,15 mol d'énantiomère E de l'acide identifié à la question précédente. 
Justifier si on peut isoler l'énantiomère
Ed et/ou l'énantiomère E . Dans l'affirmative, déterminer quelle est la 
quantité de matière maximale qui peut
être isolée.
I.E.3) Cas du racémique vrai
a) Pour un des trois dérivés de l'acide mandélique étudiés dans cette partie, 
on trouve TE = 383 K et a = 0,19.
Identifier cet acide, en justifiant votre choix.
Justifier si on peut isoler l'énantiomère Ed et/ou l'énantiomère E à partir 
d'un mélange contenant nd = 0,85 mol
d'énantiomère Ed et n = 0,15 mol d'énantiomère E de cet acide. Dans 
l'affirmative, déterminer quelle est la
quantité de matière maximale qui peut être isolée.
b) Pour le dernier des trois dérivés de l'acide mandélique étudiés dans cette 
partie, on trouve TE = 360 K et
a = 0,05.
Justifier si on peut isoler l'énantiomère Ed et/ou l'énantiomère E à partir 
d'un mélange contenant nd = 0,85 mol
d'énantiomère Ed et n = 0,15 mol d'énantiomère E de cet acide. Dans 
l'affirmative, déterminer quelle est la
quantité de matière maximale qui peut être isolée.
I.E.4) Conclure sur la possibilité d'isoler un énantiomère pur par cette 
méthode et sur le rendement de cette
opération, en fonction du type de diagramme binaire formé par le couple 
d'énantiomères considéré.

II Étude de deux diastéréoisomères : acides maléique et fumarique
Les acides maléique (noté MalH2 ) et fumarique (FumH2 ) sont deux diacides 
carboxyliques éthyléniques diastéréoisomères l'un de l'autre.
HO2 C

CO2 H

CO2 H

HO2 C
Acide fumarique FumH2

Acide maléique MalH2
Figure 6

3 avril 2012 11:53

Page 5/8

Préparé par hydrolyse de l'anhydride maléique (lui même obtenu par oxydation du 
benzène ou du butane),
l'acide maléique est utilisé comme monomère pour la synthèse de polyesters 
insaturés et de copolymères acrylomaléiques intervenant dans la formulation de 
certains détergents. Son isomérisation en milieu acide conduit à
l'acide fumarique, produit naturellement présent dans les fruits et légumes, 
utilisé par exemple comme additif
alimentaire (E 297) en tant qu'acidifiant et aussi pour la synthèse de 
polyesters insaturés.
Cette partie est consacrée à l'étude de quelques propriétés de ces deux acides 
carboxyliques.
Les données numériques utiles sont regroupées à la fin du sujet.
II.A ­

Propriétés acido-basiques des deux diastéréoisomères

II.A.1) Donner les noms des acides maléique et fumarique en nomenclature 
officielle.
II.A.2) Titrage de l'acide maléique seul
Le titrage d'une solution aqueuse d'acide maléique MalH2 de concentration 
molaire C0 inconnue à l'aide de
soude de concentration molaire C = 0,100 mol · L-1 est simulé. La courbe 
donnant l'évolution du pH lors de
l'addition de soude dans un bécher contenant initialement un volume d'essai V0 
= 0,100 L d'acide maléique est
représentée figure 7.
14
12
10
pH

8
6
4
2
0

0

5

10

15
Volume de soude V (mL)

20

25

30

Figure 7 Courbe simulée du titrage de l'acide maléique par la soude suivi par 
pH-métrie
a) Interpréter qualitativement cette courbe et en déduire la valeur de la 
concentration molaire C0 .
b) Évaluer très simplement pKA2 (MalH- /Mal 2- ) à l'aide de cette courbe.
c) On donne pKA1 (MalH2 /MalH- ) = 1,8. Peut-on retrouver cette valeur de 
manière analogue à celle du
pKA2 (MalH- /Mal 2- ) ? Justifier.
II.A.3) Titrage de l'acide fumarique seul
La simulation du titrage d'une solution aqueuse d'acide fumarique FumH2 est 
réalisée dans les mêmes conditions
que pour l'acide maléique. La courbe obtenue est représentée figure 8.
14
12
10
pH

8
6
4
2
0

0

5

10

15
Volume de soude V (mL)

20

25

Figure 8 Courbe simulée du titrage de l'acide fumarique par la soude suivi par 
pH-métrie
Interpréter cette courbe de titrage.
3 avril 2012 11:53

Page 6/8

30

Les valeurs des pKA de l'acide fumarique sont pKA 1 (FumH2 /FumH- ) = 3,0 et 
pKA 2 (FumH- /Fum 2- ) = 4,5.
II.A.4) Titrage d'un mélange d'acides maléique et fumarique
La courbe simulée du titrage d'une solution aqueuse comportant un mélange 
d'acide maléique de concentration
molaire CM et d'acide fumarique de concentration molaire CF est donnée figure 
9. La dérivée de la courbe
simulée pH = f (V ) est aussi tracée ; elle présente un léger maximum pour un 
volume versé de 14,5 mL et un
maximum très prononcé pour 21,0 mL. Ces courbes ont été obtenues à partir d'un 
volume de prise d'essai du
mélange titré de V0 = 50,0 mL et d'une solution titrante de soude de 
concentration molaire C = 0,100 mol · L-1 .
14
12
10
pH

8
6
4
2
0

0

5

10

15
Volume de soude V (mL)

20

25

30

Figure 9 Courbe simulée du titrage d'un mélange d'acide maléique et fumarique 
suivi par pH-métrie
a) Déterminer les valeurs des concentrations molaires CM et CF , en justifiant 
la méthode mise en oeuvre.
b) Cette méthode vous semble-t-elle précise pour déterminer simultanément CM et 
CF ? Justifier.
II.B ­ Solubilité des deux diastéréoisomères
L'objectif de cette partie est de purifier un échantillon d'acide fumarique par 
recristallisation dans l'eau.
II.B.1) Rappeler très brièvement la mise en oeuvre classique de la 
recristallisation d'un solide dans un solvant.
Les solubilités massiques dans l'eau de l'acide maléique, de l'acide fumarique 
et de l'acide benzoïque sont fournies
dans les données à la fin de l'énoncé. Ces solubilités seront considérées comme 
indépendantes de la présence
éventuelles d'autres espèces dissoutes.
II.B.2) La dissolution de ces acides dans l'eau est-elle exothermique ou 
endothermique ? Justifier brièvement.
II.B.3) Quels paramètres sont à considérer pour rendre compte de la solubilité 
d'une espèce chimique dans
l'eau ? Quels sont ceux qui diffèrent entre l'acide maléique et l'acide 
fumarique ? Permettent-ils de prévoir quel
est l'acide le plus soluble ?
II.B.4) On envisage la recristallisation dans l'eau d'un échantillon contenant 
10,0 g d'acide fumarique et 1,0 g
d'acide maléique.
a) Calculer Vmin , le volume minimal d'eau nécessaire pour effectuer cette 
recristallisation en ayant intégralement
dissous l'échantillon à 100  C.
b) Avec ce volume Vmin d'eau, calculer la masse d'acide fumarique solide isolée 
après filtration à 25  C. Cet
acide obtenu est-il pur ?
c) Quel inconvénient peut présenter l'utilisation d'un volume d'eau supérieur 
au volume minimal nécessaire Vmin ?
II.B.5) On envisage à présent la recristallisation dans l'eau d'un échantillon, 
contenant de l'acide benzoïque
et 10,0 g d'acide fumarique.
À quelle condition sur la masse m d'acide benzoïque présente dans l'échantillon 
la recristallisation dans le même
volume Vmin d'eau peut-elle donner de l'acide fumarique solide pur à 25  C ?
II.C ­

Propriétés complexantes de l'acide maléique et de ses dérivés

II.C.1) Les ions maléate Mal 2- forment le complexe CuMal avec les ions Cu2+ . 
En revanche, le complexe
analogue CuFum n'existe pas avec les ions fumarate Fum 2- . Proposer une 
justification.
II.C.2) Les ions Cu+ forment des complexes à un ligand avec MalH2 , MalH- et 
Mal 2- avec des constantes
de formation du même ordre de grandeur. Que peut-on en déduire en ce qui 
concerne le site de complexation
du ligand avec Cu+ ?
La corrosion bactérienne se produit quand des produits organiques libérés par 
des microorganismes peuvent
stabiliser des états oxydés de métaux. C'est le cas avec l'acide maléique qui 
complexe les ions Cu+ . La corrosion

3 avril 2012 11:53

Page 7/8

du cuivre, en présence d'une solution aqueuse contenant de l'acide maléique, 
peut être étudiée à l'aide de
microélectrodes.
II.C.3) Première phase : dépôt de cuivre sur une microélectrode
Une microélectrode de platine est plongée dans une solution acidifiée de 
sulfate de cuivre (II), de concentration
molaire C = 0,37 mol · L-1 . Son potentiel est imposé à la valeur E = 0,15 V 
(par rapport à l'électrode standard
à hydrogène) pendant une durée t = 30,0 s. Pendant cet intervalle de temps, un 
courant d'intensité constante
i = 0,84 mA est mesuré.
a) Écrire la réaction électrochimique mise en jeu à la surface de la 
microélectrode. Calculer la quantité de cuivre
déposée au cours de cette expérience (en admettant un rendement maximal pour 
cette transformation).
b) La surface de la microélectrode est S = 1,25 × 10-2 cm2 . En déduire 
l'épaisseur e de la couche de cuivre
ainsi déposée.
c) Le cuivre cristallise dans une structure cubique à faces centrées. Dessiner 
la maille conventionnelle et calculer
le rayon R de l'atome de cuivre dans cette structure en utilisant le modèle des 
sphères dures.
d) On admet que le cuivre se dépose en formant des couches au sein desquelles 
chaque atome est entouré par six
autres atomes formant un hexagone régulier. Calculer la distance d entre deux 
couches parallèles consécutives.
e) La microélectrode ainsi recouverte se comporte-elle comme une simple surface 
de cuivre ou comme du cuivre
massif ?
II.C.4) Seconde phase : anodisation du cuivre
On impose à la microélectrode recouverte de cuivre un potentiel de valeur E  = 
-0,03 V (par rapport à
l'électrode standard à hydrogène) et on la place dans une solution aqueuse 
contenant de l'acide maléique de
concentration molaire C  = 0,255 mol · L-1 . Le pH de la solution est amené à 
5,0 par ajout de soude, sans
variation de volume, puis maintenu à cette valeur. Lorsque l'équilibre 
électrochimique est établi au voisinage de
la microélectrode, la concentration en complexe contenant du cuivre (I) est 
mesurée grâce au « courant limite
d'oxydation » sur une autre électrode (en platine). La valeur obtenue est égale 
à 4,4 × 10-5 mol · L-1 .
a) Déduire des conditions expérimentales la formule du complexe formé contenant 
du cuivre (I).
b) On suppose que la concentration en ions Cu+ est imposée par le potentiel de 
Nernst (-0,03 V) de la
microélectrode de cuivre. En déduire la constante de formation () du complexe 
du cuivre (I) étudié, en justifiant
brièvement le calcul.
c) On trouve dans la littérature la valeur  = 104,3 pour ce complexe. Proposer 
une justification de l'écart entre
la valeur tabulée et la valeur obtenue expérimentalement.

Données numériques
Masses molaires atomiques, en g · mol-1 : Cu : 63,5 ; H : 1,0 ; C : 12,0 ; O : 
16,0
Masse volumique du cuivre métallique :  = 8,92 × 103 kg · m-3
Constante d'Avogadro : NA = 6,02 × 1023 mol-1
Constante de Faraday : F = 9,65 × 104 C · mol-1
Potentiels standard, à 298 K : E 0 (Cu2+ /Cu) = 0,34 V ; E 0 (Cu+ /Cu) = 0,52 V
RT
ln 10 = 0,059 V à 298 K.
On prendra
F
Gammes de nombres d'onde (exprimés en cm-1 ) caractéristiques de vibration de 
quelques liaisons en spectroscopie infrarouge.
O H
3300 -- 3500
C O (cétone non conjuguée) 1700 -- 1730
C

O (cétone conjuguée) 1670 -- 1700

C

O (ester conjugué)

1700 -- 1730

Températures de fusion d'un énantiomère (T  ) et du mélange racémique (TR ) 
pour quelques acides.
Acide

T  (K) TR (K)

ortho-chloromandélique

393

359

ortho-fluoromandélique

363

390

para-chloromandélique

394

394

Solubilités, exprimées en grammes d'espèce chimique par litre d'eau pure.
Acide maléique Acide fumarique Acide benzoïque
25  C

790

7,0

2,4

100 C

4000

100

75

· · · FIN · · ·

3 avril 2012 11:53

Page 8/8

Extrait du corrigé obtenu par reconnaissance optique des caractères



Centrale Chimie PC 2012 -- Corrigé
Ce corrigé est proposé par Christelle Serba (ENS Lyon) ; il a été relu par 
LaureLise Chapellet (ENS Lyon) et Anna Venancio-Marques (ENS Lyon).

Le sujet a pour thème la stéréoisomérie. Il est divisé en deux grandes parties
indépendantes, l'une portant principalement sur la chimie organique, l'autre 
sur la
chimie générale.
La première partie s'intéresse à la stéréoisomérie en chimie organique à travers
cinq sous-parties.
· Une première étude porte sur la caractérisation des mélanges d'énantiomères à
partir de l'excès énantiomérique et du pouvoir optique définis par l'énoncé.
· La deuxième sous-partie décrit la méthode de H.C. Brown pour augmenter
l'excès énantiomérique d'un mélange de - et d--pinènes. L'étude utilise des
notions de probabilité et la mise en application de l'excès énantiomérique 
défini
dans la première sous-partie.
· La synthèse du phaséate de méthyle à partir du --pinène, un composé chiral 
naturel, est étudiée à travers des réactions classiques comme l'ozonolyse,
l'alkylation en  d'un carbonyle ou encore la rétroacétalisation.
· La quatrième sous-partie aborde le thème de la synthèse asymétrique par 
l'utilisation d'un réactif chiral, tout en introduisant un nouveau type de 
chiralité,
la chiralité axiale. La réaction étudiée est une réaction classique 
d'élimination.
· Enfin, la séparation d'énantiomères par dédoublement est analysée à travers
l'utilisation des diagrammes binaires. De manière générale, un mélange 
d'énantiomères présente soit un diagramme de type conglomérat (sans composé 
défini), soit un diagramme de type racémique vrai (avec un composé défini).
La seconde partie étudie les propriétés de deux stéréoisomères, les acides 
maléique
et fumarique.
· Tout d'abord, les propriétés acido-basiques sont discutées à travers des 
simulations de dosages classiques.
· L'étude de la purification par recristallisation de l'acide fumarique permet 
de
s'interroger sur la solubilité.
· La dernière sous-partie s'intéresse aux propriétés complexantes des deux 
acides
avec les ions cuivre (I) et (II). Les différents complexes sont analysés avant
d'étudier la corrosion du cuivre (0) en présence d'acide maléique, ce qui fait
appel à des notions de structure cristalline et, principalement, 
d'électrochimie.
Cette épreuve constituée au total de huit sous-parties quasiment indépendantes
aborde des thèmes très variés qui permettent de ne pas rester bloqué le jour de
l'épreuve. Les questions restent généralement très proches du programme, 
exception
faite des deux premières sous-parties qui introduisent de nouvelles notions et 
amènent
à les appliquer.

Indications
PARTIE I
I.B.2.b La probabilité pour que deux événements indépendants arrivent est égale
au produit des probabilités de ces deux événements. À la fin, vérifier que la
somme des probabilités est égale à 1.
I.B.2.c Réécrire l'excès énantiomérique eep en fonction des probabilités 
calculées à la
question I.B.2.b. Utiliser l'expression de eei déterminée à la question I.B.2.a.
I.B.2.d Appliquer l'encadrement proposé à la question I.A.2.a.
I.C.9.b Envisager une réaction intramoléculaire après complète déprotection 
expliquant la perte de conjugaison de la cétone.
I.D.2.b Pour proposer un traitement correct, considérer les pKA des composés mis
en jeu.
I.E.2.a Écrire l'équilibre entre le liquide et le solide. Utiliser la relation 
de Van't
Hoff qui fait apparaître les paramètres demandés : T, R, T* et fus H .
I.E.2.b Comparer les températures T* et TR de chaque composé et déterminer les
seules températures qui sont compatibles avec un diagramme binaire de type
conglomérat.
I.E.3.a Comparer les températures T* et TR de chaque composé et déterminer les
seules températures qui sont compatibles avec un diagramme binaire de type
racémique vrai présentant une température TE = 383 K.

PARTIE II
II.A.4.a Identifier les acidités dosées à chaque équivalence en comparant les 
quatre
pKA impliqués.
II.B.2 Étudier l'évolution des solubilités à 25  C et 100  C.
II.C.3.a Déterminer la quantité d'électrons qui a traversé l'électrode pendant 
l'intervalle de temps t.
II.C.3.b Exprimer le volume déposé en fonction de la quantité de cuivre 
calculée à
la question II.C.3.a.
II.C.3.c Utiliser la masse volumique pour déterminer le paramètre a de la 
structure
cristalline nécessaire au calcul du rayon R de l'atome de cuivre.
II.C.3.d Supposer que les couches se superposent de manière compacte. Utiliser 
le
rayon atomique R calculé à la question II.C.3.c.
II.C.3.e Comparer les valeurs de e et d déterminées respectivement aux questions
II.C.3.b et II.C.3.d.
II.C.4.a Raisonner sur les pKA de l'acide maléique étudiés aux questions 
II.A.2.b
et II.A.2.c.
II.C.4.c En considérant le pH de la solution et les pKA de l'acide maléique 
étudiés
aux questions II.A.2.b et II.A.2.c, identifier toutes les espèces présentes.

I. Stéréoisomérie en chimie organique
A.

Excès énantiomérique et pureté optique

I.A.1 Une molécule chirale est une molécule non superposable à son image dans
un miroir. Un exemple est le (2R,3R)-acide tartrique.

H
O

O

H

O
O

H
O

O

H
(2R,3R)­acide tartrique
Deux molécules énantiomères l'une de l'autre sont non superposables et images
l'une de l'autre dans un miroir. Le (2R,3R)-acide tartrique et le (2S,3S 
)-acide tartrique en sont des exemples.

H

H

O

H

O

O

O

O

O

H

O

H

O
H

O

O

O

O

H

H
(2R,3R)­acide tartrique

(2S,3S)­acide tartrique

Deux molécules diastéréoisomères l'une de l'autre sont deux stéréoisomères de
configuration qui ne sont pas images l'un de l'autre dans un miroir. Le 
(2R,3R)-acide
tartrique et le (2S,3R)-acide tartrique en sont des exemples.

H

H

O
O

H

O

H

O
H

O

O

O

O

O

H
O

O

(2R,3R)­acide tartrique

O
H

H

(2S,3R)­acide tartrique

I.A.2.a L'excès énantiomérique ee peut varier de 0 à 1.
0 6 ee 6 1
Analysons les cas limites.
· ee = 0 lorsque nd = n , c'est-à-dire lorsque les deux énantiomères sont 
présents
en même quantité.
· ee = 1 lorsque nd = 0 ou n = 0, c'est-à-dire lorsqu'un seul des énantiomères
est présent.

I.A.2.b Le but, ici, est d'établir une relation entre le pouvoir optique po et 
l'excès
énantiomérique ee.
po =

max

et

ee =

nd - n
nd + n

Partons du pouvoir optique po en exprimant le pouvoir rotatoire  du mélange 
considéré. Ce mélange contient deux énantiomères Ed et E dont les 
concentrations massiques respectives sont cd et c . La concentration totale 
étant notée cm , il vient
cm = cd + c
alors

cd =

nd
cm
nd + n

et

c =

n
cm
nd + n

Le mélange possède un pouvoir rotatoire . Or, le pouvoir rotatoire global d'un
mélange est la somme des pouvoirs rotatoires de chaque constituant.
 = d + 
Déterminons les pouvoirs rotatoires générés par les énantiomères Ed et E , notés
respectivement d et  . Le pouvoir rotatoire  d'une substance en solution de
concentration massique c mesuré dans une cuve de longueur  respecte la loi de 
Biot.
 = [ ]T,  c
avec [ ]T, le pouvoir rotatoire spécifique de la substance considérée qui 
dépend de
la température T et de la longueur d'onde  utilisée pour la mesure. Appliquons 
la loi
de Biot aux énantiomères Ed et E en notant [i ]T, le pouvoir rotatoire 
spécifique
de l'énantiomère Ei .
d = [d ]T,  cd
d = [d ]T,  cm
et

nd
nd + n

 = [ ]T,  c
n
nd + n
n
= -[d ]T, , d'où  = -[d ]T,  cm
nd + n
= [ ]T,  cm

or [ ]T,

Remontons maintenant au pouvoir rotatoire global  du mélange.
 = d + 
= [d ]T,  cm
 = [d ]T,  cm

nd
n
- [d ]T,  cm
nd + n
nd + n
nd - n
nd + n

|| = |[d ]T,  cm | ×

nd - n
nd + n

Le pouvoir rotatoire spécfique des énantiomères Ed et E n'est pas donné mais
l'énoncé introduit le pouvoir rotatoire |max | défini comme la valeur absolue 
du pouvoir rotatoire d'une solution contenant un seul énantiomère à la 
concentration cm .
D'après la loi de Biot, cette définition se traduit par
|max | = |[i ]T,  cm |